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Abstract: We address the problem of the optimal management of an aggregate of electric
vehicles (EVs) for the provision of ancillary services to the grid, by means of a bidirectional
vehicle-to-grid (V2G) infrastructure. We consider the case of a charging point operator that acts
as an aggregator and has to optimally choose the charge/discharge power profile of each vehicle
so as to maximize its profits, while satisfying technical constraints and final user constraints (the
latter expressed as a minimum desired charge for motion). In this setting the aggregator can
operate on both an energy market and an ancillary services market : in the latter, the deployed
power depends on a signal received by the aggregator after the market closing time; this signal
can be discrete or continuous. We formulate the problem via stochastic programming, under the
assumptions of optimal bidding strategy and known vehicle arrivals and departures. We obtain,
via mixed-integer linear programming, an exact robust counterpart of the constraints and an
expected value cost function, which is exact if the signal is discrete. If the signal is continuous,
the cost function varies depending on the probability distribution of the signal and could require
an approximation to obtain a computationally tractable formulation. We then show that, in the
case of uniform probability, an efficient formulation can be obtained by introducing a negligible
approximation of the cost function; a numerical example shows the validity of the approach.

Keywords: Stochastic optimal control problems, Robust control applications, Power Systems.

1. INTRODUCTION

The increase in electric vehicle (EV) penetration is rapidly
opening the opportunity for the introduction of vehicle-
to-grid (V2G) power. This is the possibility for an EV to
provide ancillary services to the main grid by appropriately
charging and discharging. Because of the limited power
capacity of each vehicle, the participation to the market
of a single EV must be mediated by an aggregator, that is
the owner or the manager of a parking lot equipped with
EV charging stations. This actor operates on the market
by joining the capacity of the vehicles in its fleet and earns
profits by offering ancillary services: these profits can be
then shared with the EV users.

The topic of V2G is gaining more and more interest in
the literature of both control and power systems com-
munities. In Kempton and Tomić (2005a) and Kempton
and Tomić (2005b) the positive impacts and the actual
applicability of V2G are discussed on both the technical
and economical side. The problem discussed in this work,
i.e., how to optimally charge and discharge a fleet of EVs, is
discussed in Sortomme and El-Sharkawi (2010), Sortomme
and El-Sharkawi (2011), He et al. (2012), Vagropoulos
and Bakirtzis (2013), Sarker et al. (2015), to name a
few. However, these works either consider a deterministic
setting or consider an expected value reformulation of the
constraints. Since the deployment level of the ancillary

services to be provided is both unknown in advance and
binding on the aggregator, a robust counterpart (Ben-Tal
et al. (2009)) of the problem should be sought, so as to
ensure the satisfaction of the constraints for any possible
value of the received signal. The problem of computing
a robust counterpart of constraints involving the state of
a dynamical system is strictly related to the reachability
analysis problem (Bemporad and Morari (1999b)). In the
case of piecewise affine systems (as the ones considered in
this paper), this is in general a hard problem (Bemporad
and Morari (1999b)); however, in our setting, thanks to the
particular structure of the considered systems, we are able
to provide an exact tightening of the constraints via mixed-
integer linear programming. As for the cost function, we
choose to maximize the expected value of the profits.
Finally, we validate the overall stochastic approach on a
numerical case study.

The rest of the paper unfolds as follows. In Section 2 we
introduce our assumptions and nomenclature of variables.
In Section 3 we assume the services signal known, so that
a deterministic formulation of the problem is obtained. In
Section 4 this assumption is removed and we derive the
stochastic reformulation of constraints and cost function.
In Section 5 we validate the approach on a numerical
example, whereas in Section 6 we draw some conclusion
remarks.
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2. ASSUMPTIONS AND NOMENCLATURE

A schematic of the parking lot with the names of the
variables is depicted in Fig. 1; the complete lists of model
variables and parameters are shown in Tables 1 and 2.

2.1 Sets, indices and units of measurement

The parking lot is composed by n slots, indexed as I =
{1, . . . , n}. We assume that each slot i ∈ I is equipped
with one charging station that is able to charge one EV
at a time. The considered time horizon is denoted by
T = {1, . . . , T}; each optimization period t ∈ T has a
duration of τ hours. Time is expressed in hours, power
in kW, energy in kWh. The variables and parameters
involving power follow the load convention: positive when
power flows from the grid to the EVs.

2.2 EV charge/discharge

EV users pay the aggregator a tariff cv+, proportional to
the charged energy; whenever the aggregator decides to
temporarily discharge a vehicle, it returns the EV user a
tariff cv− > cv+, in order to compensate for the greater
battery degradation.

In every period t in which an EV is parked at slot i,
the charge in its battery is allowed to range between
parameters Emin

t,i and Emax
t,i , which can be respectively set

e.g. to 0 and the battery capacity, or other less extreme
values; at departure time, Emin

t,i represents the minimum
charge for motion required by the user.

We consider that the availability of each vehicle at a given
time is known in advance: this assumption is satisfied
in, e.g., public transport parking lots, where arrivals and
departures are scheduled. Extending the model to deal
with stochastic availability of vehicles will be object of
future research work.

We consider both the charging station efficiency (ηg+,
ηg−) and the vehicle efficiency (ηv+, ηv−); the + and −

superscripts stand for charge and discharge case, respec-
tively. Distinguishing between charging station and vehicle
efficiencies allows to accommodate both the AC and the
DC charge/discharge scenarios. Furthermore, it enables
to compute the power flow at grid interface (needed for
evaluating market bids), at the interface between charging
stations and vehicles (needed for computing the charg-
ing/discharging profit), and at vehicles batteries (needed
for the state of charge estimation).

Fig. 1. Parking lot schematic with variable names.

Table 1. List of model variables.

name domain description

pe+t R+ Positive part of power (buy bid) traded on energy
market in period t

pe−t R+ Negative part of power (sell bid) traded on energy
market in period t

ss+
u(t)

R+ Positive part of power (buy bid) traded on ancillary
services market in period u(t)

ss−
u(t)

R+ Negative part of power (sell bid) traded on ancillary
services market in period u(t)

pt,i R Portion of pe+t − pe−t relating to slot i

s+t,i R+ Portion of ss+
u(t)

relating to slot i

s−t,i R+ Portion of ss−
u(t)

relating to slot i

pv+t,i R+ Positive part of power exchanged with slot i in period
t [deterministic formulation only]

pv−t,i R+ Negative part of power exchanged with slot i in
period t [deterministic formulation only]

Table 2. List of model parameters.

name domain description

ω+
t [0,1] Positive part of ancillary services signal in period t

[deterministic formulation only]

ω−
t [0,1] Negative part of ancillary services signal in period t

[deterministic formulation only]

dt,i N 0 if slot i is empty in period t; else, number of periods
since EV arrival, counting from 0

Emax
t,i R+ Maximum allowed energy for slot i at end of period t

Emin
t,i R+ Minimum allowed energy for slot i at end of period t

E0
t,i R+ Energy injection in slot i at begin of period t resulting

from the arrival of an EV in the preceding period

pv,max
t,i R+ Max charge power of the EV in slot i in period t

pv,min
t,i R− Max discharge power of the EV in slot i in period t

pg,max R+ Max imported power from the grid

pg,min R− Max exported power to the grid

ce+t R+ Price of buy bids on the energy market in period t

ce−t R+ Price of sell bids on the energy market in period t

cs+
u(t)

R+ Price of buy bids on the ancillary services market in
period t

cs−
u(t)

R+ Price of sell bids on the ancillary services market in
period t

cv+ R+ EVs charging tariff

cv− R+ EVs discharging tariff

ηg+ (0, 1) Average charge efficiency of charging stations

ηg− (0, 1) Average discharge efficiency of charging stations

ηv+ (0, 1) Average charge efficiency of EVs

ηv− (0, 1) Average discharge efficiency of EVs

λ R+\{0}Average self-discharge rate of EVs

τ R+ Duration of each period

m N\{0} Ratio between ancillary services market and energy
market period duration
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2.3 Markets

In our framework, the aggregator can trade energy by
operating in an energy market and in an ancillary services
market. Both the terminology related to ancillary services
and their implementation can vary significantly from coun-
try to country, due to development in different technical
and normative contexts: interested readers are referred to
overviews such Banshwar et al. (2018) and Kaushal and
Van Hertem (2019).

The supply of the energy market is sure, i.e. the deployed
power is determined exclusively by the accepted bids. As
for the ancillary services market, we assume that the de-
ployed power depends also on a signal {ωt}t∈T distributed
after the market closing time by the Transmission System
Operator (TSO) or by the Distribution System Operator
(DSO). This signal assumes values in a set Ω that can
be discrete or continuous. If discrete, the possible values
for ωt are: −1 “deploy the sell bid”, 0 “do nothing”, and
+1 “deploy the buy bid”; else, in the continuous case,
the signal represents the deployment level in the [−1,+1]
interval, where the values −1, 0 and +1 have the same
meaning of the discrete case.

For every period t, the signal ωt is an uncertain coefficient
for the optimization problem: we assume that its probabil-
ity distribution is known (in practice, it can be estimated
from historical data). If Ω is discrete, for every t ∈ T the
probability distribution of ωt is completely characterized
by its values: π+

t = P (ωt = +1), π−t = P (ωt = −1),
and clearly P (ωt = 0) = 1 − π+

t − π−t . In the case
where Ω is continuous, the cost function of our stochastic
model depends on the probability distribution of each
random variable ωt with t ∈ T ; we expose the model with
two further assumptions: that {ωt}t∈T is a collection of
independent random variables, and that all of them are
uniformly distributed over [−1,+1].

We consider the duration τ of the optimization periods
equal to that of the energy market periods. The ancillary
services market is allowed to have a periodicity which is a
multiple m of τ ; a function u : t 7→ d tme is used to obtain
the period indices of the ancillary services market.

We also assume that the aggregator has an optimal bidding
strategy, such that its bids in both markets are always
accepted. The prices at which its bids are placed in the
energy and ancillary services markets are denoted by
ce+t , ce−t and cs+u(t), c

s−
u(t) respectively, where the + and −

superscripts stand for buy bid and sell bid respectively.
We further assume that

ce+t > ce−t ∀t ∈ T . (1)

3. DETERMINISTIC PROBLEM FORMULATION

In this section we assume that the ancillary services signal
{ωt}t∈T is known.

3.1 Constraints

Power grid connection Power exchanged with the grid
is the sum of the power exchanged on the energy market
and on the ancillary services market; it is limited by:

pg,min ≤
∑
i∈I

pt,i + ω+
t s

s+
u(t)−ω

−
t s

s−
u(t) ≤ p

g,max ∀t ∈ T . (2)

The actual power bought (sold) on ancillary services
market is the product of ss+u(t) (ss−u(t)) and the positive

(negative) part ω+
t (ω−t ) of the signal.

Bids We introduce a limit on each term appearing in
(2). The maximum range for power traded on the energy
market is given by:

pg,min ≤
∑

i∈I
pt,i ≤ pg,max ∀t ∈ T . (3)

The maximum range for ss+u(t) and ss−u(t) is modeled so as

to allow the possibility of providing a power that span the
entire capacity of the parking lot:

ss+u(t) ≤ p
g,max − pg,min ∀t ∈ T (4)

ss−u(t) ≤ p
g,max − pg,min ∀t ∈ T . (5)

Nonnegativity of the variables ss+u(t) and ss−u(t) will be

enforced by constraints (8), (9), and (10).

Balance constraints Bids on both markets are split
among the slots via constraints:

pe+t − pe−t =
∑

i∈I
pt,i ∀t ∈ T (6)

pe+t ≥ 0, pe−t ≥ 0 ∀t ∈ T (7)

ss+u(t) =
∑

i∈I
s+
t,i ∀t ∈ T (8)

ss−u(t) =
∑

i∈I
s−t,i ∀t ∈ T (9)

s+
t,i ≥ 0, s−t,i ≥ 0 ∀t ∈ T , ∀i ∈ I. (10)

Thanks to function u, the values of ss+u(t) and ss−u(t) are con-

stant for m consecutive periods, fulfilling the periodicity
requirement of the ancillary services market; nevertheless,
the values of s+

t,i and s−t,i can change in consecutive periods.
The reason to split the bids among all slots is to facilitate
the extension of the model to the stochastic formulation
and will be more clear in Section 4.

EVs charging/discharging power Power exchanged with
EVs is limited by:

ηg−pv,min
t,i ≤ pt,i + ω+

t s
+
t,i − ω

−
t s
−
t,i ≤

1

ηg+
pv,max
t,i

∀t ∈ T , ∀i ∈ I
(11)

where pv,min
t,i ∈ R− and pv,max

t,i ∈ R+ are quantified at the
interface between the charging station and the EV. The
energetic modeling of the EVs requires to separate the
above power in its positive and negative parts:

pv+
t,i − p

v−
t,i = pt,i + ω+

t s
+
t,i − ω

−
t s
−
t,i ∀t ∈ T , ∀i ∈ I (12)

pv+
t,i ≥ 0 ∀t ∈ T , ∀i ∈ I (13)

pv−t,i ≥ 0 ∀t ∈ T , ∀i ∈ I. (14)

These constraints do not prevent pv+
t,i and pv−t,i from being

both positive for the same t and i, but this never happens
in optimal solutions, as will be explained in Section 3.3.

Energy stored in the EVs The energy stored in the EVs
is modeled considering the self-discharge as proportional
to the energy, i.e. according to the differential equation
d
dtE(t) = p(t) − λE(t), where E is the energy in the
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EV battery, p is its charging/discharging power and the
constant λ is the self-discharge rate expressed in h−1.
By solving the above equation with constant power and
discretizing the time over one period t we get at its end

Et,i = e−λτEt−1,i +
1− e−λτ

λ
pt,i. (15)

Unrolling this expression over time since the EV arrival
we obtain

Et,i = e−(dt,i+1)λτE0
t−dt,i,i+

1− e−λτ

λ

dt,i∑
k=0

e−kλτpt−k,i. (16)

Here, the power at the EV battery pt−k,i can be readily
expressed in terms of the power upstream of the charging
station, by substituting, with the appropriate indices,

pt,i = ηg+ηv+pv+
t,i −

1

ηg−ηv−
pv−t,i . (17)

We can now impose a lower and an upper bound on the
energy stored in each EV, via constraints:

Emin
t,i ≤ Et,i ≤ Emax

t,i ∀t ∈ T , ∀i ∈ I. (18)

Observe that Et,i is not a model variable: its presence in
(18) is just as a placeholder for (16); the same holds for
pt−k,i in (16), which is a placeholder for (17), with the
appropriate indices.

3.2 Cost function

The aim of the aggregator is to maximize its profit. We
equivalently consider the minimization of the negative
profit, which is given by z = ze + zs + zv, where

ze = τ
∑

t∈T

(
ce+t pe+t − ce−t pe−t

)
(19)

is the net cost of the operations on the energy market,

zs = τ
∑

t∈T

(
cs+u(t)ω

+
t s

s+
u(t) − c

s−
u(t)ω

−
t s

s−
u(t)

)
(20)

is the net cost of the operations on the ancillary services
market, and

zv = τ
∑
t∈T

(
−cv+ηg+

∑
i∈I

pv+
t,i + cv−

1

ηg−

∑
i∈I

pv−t,i

)
(21)

is the net cost derived from charging and discharging the
EVs. Significantly, possible time-dependent costs might
also be present for the aggregator, but they would not
be relevant to the optimization problem, since they would
add a constant term to the cost function.

3.3 Deterministic optimization problem

Combining constraints and cost function defined in this
section we obtain the following optimization problem:

min (19) + (20) + (21)

subject to (2), (3), (4), (5), (6), (7), (8), (9),

(10), (11), (12), (13), (14), (18).

(22)

Problem (22) is a linear programming problem that can
be solved even for large instances by means of standard
solvers like CPLEX (2019).

Note that this formulation does not prevent pe+t and pe−t
from being both positive for the same t. Nevertheless, be-
cause: (a) these variables appear only in the defining con-
straints (6), (7), and in the cost function; and (b) thanks to

assumption (1), the cost function would be convex in the
actual power pe+t − pe−t traded on the energy market; the
formulation with positive and negative parts is equivalent
to an epigraph reformulation (see Boyd and Vandenberghe
(2004)) and solutions having both pe+t and pe−t greater
than zero are never optimal. The same argument cannot be
used with pv+

t,i and pv−t,i , because, in addition to appearing

in the defining constraints (12), (13), and (14) and in
the cost function, these variables appear also in energy
constraint (18); however, the reader could easily verify that
setting both pv+

t,i and pv−t,i to positive values for the same
t and i would result in an energy leakage and, therefore, a
worse cost (see Baker et al. (2012)).

4. EXTENSION TO STOCHASTIC PROGRAMMING

In this section we extend the model to the more realistic
case where the signal {ωt}t∈T is uncertain.

4.1 Robust constraints

In our application, it is natural to consider a robustified
version of the constraints, so that technical limits on power
flowing on the lines and in the EV batteries can be satisfied
for each possible signal realization. Therefore, our aim is
to construct a robust counterpart (Ben-Tal et al. (2009)) of
the constraints of problem (22). Constraint g(x) ≤ 0 is a
robust counterpart of h(x, ω) ≤ 0, where ω is an uncertain
parameter, if

g(x) ≤ 0 ⇒ h(x, ω) ≤ 0 ∀ω. (23)

If (23) holds with ⇔, constraint g(x) ≤ 0 is exact and no
conservatism is added.

The constraints obtained in this section are independent of
the choice of Ω (discrete or continuous) because its convex
hull is the same, i.e. [−1,+1]; see Ben-Tal et al. (2009).

Power grid connection Exploiting the fact that ω+
t ≤ 1,

ω−t ≤ 1, and either ω+
t = 0 or ω−t = 0, the exact robust

counterpart of constraint (2) is:∑
i∈I

pt,i + ss+u(t) ≤ p
g,max ∀t ∈ T (24)∑

i∈I
pt,i − ss−u(t) ≥ p

g,min ∀t ∈ T . (25)

EVs charging/discharging power Similarly to grid con-
nection limits, the robust counterpart of constraint (11)
can be obtained:

pt,i + s+
t,i ≤

1

ηg+
pv,max
t,i ∀t ∈ T , ∀i ∈ I (26)

pt,i − s−t,i ≥ η
g−pv,min

t,i ∀t ∈ T , ∀i ∈ I. (27)

Energy stored in the EVs The robust counterpart of
(18) can not be immediately obtained, because in (17) we
are not allowed to use pv+

t,i and pv−t,i variables defined by

equality constraint (12). Indeed, it does not make sense
to impose constraint (12) ∀ωt, since this would have as a
unique solution s+

t,i = s−t,i = 0. So, we can only express
the power upstream of the i-th charging station as an
uncertain function of the signal

p̃t,i = pt,i + ω+
t s

+
t,i − ω

−
t s
−
t,i (28)
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and redefine (17) as

pt,i =

{
ηg+ηv+p̃t,i if p̃t,i ≥ 0

1
ηg−ηv− p̃t,i if p̃t,i < 0.

(29)

As a consequence, the energy Et,i defined in (16) now de-
pends on the signal; thus, bounds (18) must be robustified
by imposing:

min
ωt−dt,i

,...,ωt∈Ω
Et,i ≥ Emin

t,i (30)

max
ωt−dt,i

,...,ωt∈Ω
Et,i ≤ Emax

t,i . (31)

Since Et,i is a monotone function with respect to
ωt−dt,i , . . . , ωt variables, its minimum and maximum are
attained at the extrema of Ω and can be easily calculated:

min
ωt−dt,i

,...,ωt∈Ω
Et,i = e−(dt,i+1)λτE0

t−dt,i,i +
1− e−λτ

λ
·

·
dt,i∑
k=0

e−kλτ
{
ηg+ηv+(pt−k,i − s−t−k,i) if pt−k,i − s−t−k,i ≥ 0

1
ηg−ηv− (pt−k,i − s−t−k,i) if pt−k,i − s−t−k,i < 0

(32)

max
ωt−dt,i

,...,ωt∈Ω
Et,i = e−(dt,i+1)λτE0

t−dt,i,i +
1− e−λτ

λ
·

·
dt,i∑
k=0

e−kλτ
{
ηg+ηv+(pt−k,i + s+

t−k,i) if pt−k,i + s+
t−k,i ≥ 0

1
ηg−ηv− (pt−k,i + s+

t−k,i) if pt−k,i + s+
t−k,i < 0.

(33)

Because these are piecewise linear functions, the actual
implementation of (30) and (31) in a mathematical pro-
gramming model require further transformations. By ex-
ploiting the relation ηg+ηv+ < 1

ηg−ηv− , constraint (30) can

be expressed via hypograph formulation introducing only
continuous auxiliary variables lt,i:

dt,i∑
k=0

e−kλτ lt−k,i ≥
λ
(
Emin
t,i − e−(dt,i+1)λτE0

t−dt,i,i

)
1− e−λτ

∀t ∈ T , ∀i ∈ I

(34)

lt,i ≤ ηg+ηv+
(
pt,i − s−t,i

)
∀t ∈ T , ∀i ∈ I (35)

lt,i ≤
1

ηg−ηv−
(
pt,i − s−t,i

)
∀t ∈ T , ∀i ∈ I (36)

Crucially, this formulation does not require binary vari-
ables because the hypograph defined by inequalities (35)
and (36) is convex, thus allowing to enforce both inequal-
ities simultaneously.

A similar epigraph formulation of constraint (31) can
not be obtained by introducing only continuous auxiliary
variables ut,i, because their piecewise linear epigraphs
are not convex; therefore we need to introduce binary
variables yt,i to enforce only one inequality at a time.
These considerations lead to the following formulation
(where ∀t ∈ T , ∀i ∈ I is omitted for brevity):

dt,i∑
k=0

e−kλτut−k,i ≤
λ
(
Emax
t,i − e−(dt,i+1)λτE0

t−dt,i,i

)
1− e−λτ

(37)

ut,i ≥ ηg+ηv+
(
pt,i + s+

t,i

)
−M1

t,i(1− yt,i) (38)

ut,i ≥
1

ηg−ηv−
(
pt,i + s+

t,i

)
−M2

t,iyt,i, (39)

where we set the constants:

M1
t,i = ηg−pv,min

t,i

(
ηg+ηv+ − 1

ηg−ηv−

)
(40)

M2
t,i =

1

ηg+
pv,max
t,i

(
1

ηg−ηv−
− ηg+ηv+

)
(41)

so as to achieve the tightest possible bounds; i.e.,
M1
t,i and M2

t,i are the smallest shifts that make su-

perfluous the respective constraints when pt,i + s+
t,i ∈[

ηg−pv,min, (1/ηg+) pv,max
]
. Finally, it can be noted that

yt,i is not enforced to change according to the sign of pt,i+
s+
t,i in (38) and (39); however, if critical to the satisfiability

of (37), yt,i will be set by the solver to the value that allows
ut,i to assume its minimum value, i.e. yt,i = 1 if and only
if pt,i + s+

t,i ≥ 0.

An alternative approach for formulating the bounds on
the energy stored in the EVs would consist in rewriting
the piecewise affine system resulting from (16) and (29)
in its Mixed Logical Dynamical (MLD) formulation (see
Bemporad and Morari (1999a)) and then tightening the
obtained constraints (see Vignali et al. (2014)). Nonethe-
less, this would introduce in the problem a robust version
of (29) that fixes the sign of the power independently on
the realization of the signal, thus excluding the solutions
where the battery can be charged or discharged depending
on the realization of the signal.

Summary of constraints To summarize, the constraints
of the stochastic formulation are the following:

(24), (25) [grid connection]

(6), (7), (8), (9), (10) [balance constr.]

(26), (27) [EVs power]

(34), (35), (36), (37), (38), (39). [EVs energy]

(42)

4.2 Expected value cost function

When uncertainty is involved in the cost function, different
criteria may be chosen. The worst-case scenario approach
is standard in robust optimization (see Ben-Tal et al.
(2009)) and, applied to this problem, consists in minimiz-
ing maxω1,...,ωT∈Ω ((19) + (20) + (21)). This would lead to
never exploiting the ancillary services market. In fact,

for each t ∈ T : if there exists an ω†t ∈ Ω such that
exploiting the ancillary services market entails a greater
cost, then any optimal solution would have ss+t = ss−t = 0;
else, the maximum when ωt varies would be attained at
ωt = 0, making any choice of ss+ and ss−t equivalent to
ss+t = ss−t = 0. Recalling that this problem has to be
solved periodically, we deem the expected value to be a
more appropriate criterion for the cost function, because
by definition it represents the best estimate of the long-
term cost.

Exploiting linearity, the expected value of the cost function
is given by:

E(z) = ze + E(zs) + E(zv), (43)

where:
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E(zs) = τ
∑

t∈T

(
cs+u(t)s

s+
u(t)E(ω+

t )− cs−u(t)s
s−
u(t)E(ω−t )

)
(44)

E(zv) = τ
∑

t∈T

∑
i∈I

E
(
zvt,i
)

(45)

E(zvt,i) = E
(
− cv+ηg+

[
pt,i + s+

t,iω
+
t − s−t,iω

−
t

]+
+

+ cv−
1

ηg−
[
pt,i + s+

t,iω
+
t − s−t,iω

−
t

]− )
.

(46)

The expressions of these expected values depend on
whether Ω is discrete or continuous. In the following, for
notational convenience, we set

a = cv+ηg+ and b =
cv−

ηg−
. (47)

Discrete Ω The expression of (44) is trivial:

E(zs) = τ
∑

t∈T

(
cs+u(t)π

+
t s

s+
u(t) − c

s−
u(t)π

−
t s

s−
u(t)

)
; (48)

that of (46), instead, requires a piecewise formulation:
after some calculations we get

E(zvt,i) =

=


−ap− aπ+s+ + aπ−s− if p ≥ 0 ∧ p ≥ s−
−(a(1− π−) + bπ−) p− aπ+s+ + bπ−s− if p ≥ 0 ∧ p < s−

−(aπ+ + b(1− π+)) p− aπ+s+ + bπ−s− if p < 0 ∧ p > −s+

−bp− bπ+s+ + bπ−s− if p < 0 ∧ p ≤ −s+,

(49)

where we omitted the period and slot indices for brevity.

Observing that the inequality ηg+ηg− < 1 < cv−

cv+ holds
by definition of its elements, so a < b, it is rather easy to
verify that (49) can be recast to

E(zvt,i) = max


−ap− aπ+s+ + aπ−s−

−(a(1− π−) + bπ−) p− aπ+s+ + bπ−s−

−(aπ+ + b(1− π+)) p− aπ+s+ + bπ−s−

−bp− bπ+s+ + bπ−s−,

(50)

thus proving that is a convex function; as such, (50) can
be expressed via an epigraph formulation. In conclusion,
in this case, minimizing (43) translates to minimizing

τ
∑

t∈T

(
ce+t pe+t − ce−t pe−t +

+ cs+u(t)π
+
t s

s+
u(t) − c

s−
u(t)π

−
t s

s−
u(t) +

∑
i∈I

ht,i

)
,

(51)

where the auxiliary variables ht,i are, ∀t ∈ T , ∀i ∈ I,
subject to:

ht,i ≥ −apt,i − aπ+
t s

+
t,i + aπ−t s

−
t,i (52)

ht,i ≥ −(a(1− π−t ) + bπ−t ) pt,i − aπ+
t s

+
t,i + bπ−t s

−
t,i (53)

ht,i ≥ −(aπ+
t + b(1− π+

t )) pt,i − aπ+
t s

+
t,i + bπ−t s

−
t,i (54)

ht,i ≥ −bpt,i − bπ+
t s

+
t,i + bπ−t s

−
t,i. (55)

Continuous Ω In this case, the form assumed by the
expected values in (44) and (46) depends on the probabil-
ity distributions of {ωt}t∈T variables. For example, with
the further assumptions mentioned in Section 2 (indepen-
dence and uniform distribution), it is easy to observe that
E(ω+

t ) = E(ω−t ) = 1
4 , so that (44) becomes

E(zs) =
1

4
τ
∑

t∈T

(
cs+u(t)s

s+
u(t) − c

s−
u(t)s

s−
u(t)

)
, (56)

while expected value (46) can be expressed as

E(zvt,i)=


−ap− a

4s
+ + a

4s
− if p ≥ 0 ∧ p ≥ s−

−a+b
2 p− a

4s
+ + b

4s
− + b−a

4
p2

s− if p ≥ 0 ∧ p < s−

−a+b
2 p− a

4s
+ + b

4s
− + b−a

4
p2

s+ if p < 0 ∧ p > −s+

−bp− b
4s

+ + b
4s
− if p < 0 ∧ p ≤ −s+,

(57)

where we omitted the period and slot indices for brevity.
Again depending on the probability distributions of
{ωt}t∈T , expected values (44) and (46) can result in non-
linear functions, as is for (57) in this case, due to the
presence of terms p2

t,i/s
−
t,i and p2

t,i/s
+
t,i. To obtain a com-

putationally tractable model it is necessary to construct a
linear surrogate of the nonlinear expected values. In the
case under consideration we linearize (57) by imposing
continuity on the border of the piecewise regions:

E(zvt,i)≈


−ap− a

4s
+ + a

4s
− if p ≥ 0 ∧ p ≥ s−

− 3a+b
4 p− a

4s
+ + b

4s
− if p ≥ 0 ∧ p < s−

−a+3b
4 p− a

4s
+ + b

4s
− if p < 0 ∧ p > −s+

−bp− b
4s

+ + b
4s
− if p < 0 ∧ p ≤ −s+.

(58)

By the same argument used for (49) and (50) it can be
proven that this approximation is a convex function. This
enables us to proceed as in the discrete Ω case, obtaining
the following approximated cost function:

τ
∑

t∈T

(
ce+t pe+t − ce−t pe−t +

+
cs+u(t)

4
ss+u(t) −

cs−u(t)

4
ss−u(t) +

1

4

∑
i∈I

ht,i

)
,

(59)

where the auxiliary variables ht,i are subject to:

ht,i ≥ −4apt,i − as+
t,i + as−t,i ∀t ∈ T , ∀i ∈ I (60)

ht,i ≥ −(3a+ b) pt,i − as+
t,i + bs−t,i ∀t ∈ T , ∀i ∈ I (61)

ht,i ≥ −(a+ 3b) pt,i − as+
t,i + bs−t,i ∀t ∈ T , ∀i ∈ I (62)

ht,i ≥ −4bpt,i − bs+
t,i + bs−t,i ∀t ∈ T , ∀i ∈ I. (63)

4.3 Stochastic optimization problems

Combining constraints and cost function described in this
section we finally get the following stochastic optimization
problem for the case in which Ω is discrete:{

min (51)

subject to (52), (53), (54), (55), (42).
(64)

In case of continuous Ω and with the further assumptions
mentioned in Section 2, we get an approximated stochastic
optimization problem:{

min (59)

subject to (60), (61), (62), (63), (42).
(65)

Both (64) and (65) are mixed-integer linear programming
(MILP) problems and can be solved via standard solvers
like CPLEX (2019). An optimal solution of (64) or (65)
maximizes the expected value of the aggregator’s profits
and is such that the constraints on power flowing from/to
the grid, power flowing from/to the EVs and energy in
the EVs are satisfied for any possible realization of the
ancillary services market signal {ωt}t∈T .

5. NUMERICAL CASE STUDY

As a case study let us consider the following instance.
The parking lot is composed by 25 slots, in which a total
of 100 vehicles stop during a time horizon of 24 hours,
with an average stop duration of around 6 hours (the
arrival time and departure time of each vehicle can be
inferred from Fig. 7). The power limit at the grid interface
is pg,max = −pg,min = 500 kW. The energy market has
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Fig. 2. Prices: the energy market has a time discretization
of 15 minutes, the services market of 1 hour, and the
user prices are constant.

15 minutes time periods (τ), whilst the ancillary services
market has 1 hour periods (m = 4). The input prices
are represented in Fig. 2 (only the energy component –
without system charges and VAT – has been considered).
The ancillary services market signal is continuous.

The approximated formulation (65) has been coded using
MATLAB programming language with YALMIP modeling
toolbox (see Löfberg (2004)) and solved with CPLEX
(2019) optimizer. The optimal solution of an instance of
this size can be computed in about 1 minute using a
standard PC.

0:00 6:00 12:00 18:00 24:00

-250
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 (
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Fig. 3. Bids in energy market.
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er
 (
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buy bids sell bids

Fig. 4. Bids in ancillary services market. Note that is
possible to simultaneously place a buy and a sell
bid. Nonetheless, only one of them will be realized,
depending on the value of ωt.

The bids in energy and services markets can be compared
in Figs. 3 and 4. Note that ancillary services market bids
can be concurrent, i.e. the aggregator can place buy and
sell bids for the same period: nonetheless, only one of the
bids will be realized, to an amount defined by the value of
the signal ωt.

Fig. 5 represents the power exchanged at the grid interface.
We can note that the minimization of costs produces a
shift of power consumption towards the hours in which the
energy is cheaper. Fig. 5 highlights the power variations
as a function of the signal: as can be noted, the bounds
on maximum and minimum absorption (pg,max, pg,min) are
always satisfied. The total energy absorbed from the grid,
computed as the integral of the exchanged power, ranges
from 2.7 MWh to 3.3 MWh, depending on the signal
realization.

Fig. 6 shows the parking lot equivalent energy and ca-
pacity, both obtained as the sum of the corresponding
quantity for each EV. Placing a bid in the services market
generates an effect on the equivalent energy of the parking
lot to an extent that depends not only on the signal but
also on vehicles departures: for example, the effect of the
bids from 7:00 to 13:00 will vanish at 15:00, because the
involved vehicles will have left the parking lot by that time.

Finally, in Fig. 7 is shown a representation of the charg-
ing state for each period and slot. Interestingly enough,
we are able to include in the solution those cases when,
depending on the realization of the signal, the batteries
are either charged or discharged (yellow area); as outlined

0:00 6:00 12:00 18:00 24:00
-500

0

500

Po
w

er
 (

kW
)

grid max
grid min

possible outcomes
no services

Fig. 5. Power at grid interface. For any possible outcome,
bounds are satisfied.
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possible outcomes

no services

Fig. 6. Parking lot equivalent energy as a sum of the energy
stored in each EV. For any possible outcome, bounds
on maximum capacity are satisfied.
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Fig. 7. Charging state of the parking slots during the
considered time horizon.

in previous sections, this has some interesting links with
reachability analysis of piecewise affine systems (see Be-
mporad and Morari (1999b), Schürmann et al. (2020))
and, in particular, with the case of reachable sets splitting
among different modes. Yellow regions represent also those
cases where an actual approximation of the cost function
is performed. Since the number of these regions is quite
limited (3 % of the total) and since the error introduced
with the linearization is very small (less than 0.5 % for
every reasonable value of p, s+ and s−), we can safely
conclude that we incur in a negligible approximation error.

6. CONCLUSIONS

We have discussed the problem of optimal management of
an aggregate of electric vehicles for the provision of an-
cillary services, under the assumptions of optimal bidding
strategy and known vehicle arrivals and departures. We
have considered that the deployed power on the ancillary
services market depends on a signal that can be discrete or
continuous; we have formulated one stochastic optimiza-
tion problem for each of this two cases. Both formulations
are MILP, have robust constraints and have an expected
value cost function, which is exact if the ancillary services
market signal is discrete. If the signal is continuous, the
cost function varies depending on the probability distribu-
tion of the signal and could require an approximation to
obtain a computationally tractable formulation. We have
then shown that, in the case of uniform probability, an
efficient formulation can be obtained by introducing a
negligible approximation of the cost function; the validity
of the approach has been shown on a numerical example.
In future research we will study the extension to the case
of stochastic arrivals and departures of the vehicles, and
the online application of the proposed algorithm.
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