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Abstract - To prevent the reduction of muscle mass and loss of strength coming along with
the human aging process, regular training with e.g. a leg press is suitable. However, the risk
of training-induced injuries requires the continuous monitoring and controlling of the forces
applied to the musculoskeletal system as well as the velocity along the motion trajectory and
the range of motion. In this paper, an adaptive norm-optimal iterative learning control algorithm
to minimize the knee joint loadings during the leg extension training with an industrial robot is
proposed. The response of the algorithm is tested in simulation for patients with varus, normal
and valgus alignment of the knee and compared to the results of a higher-order iterative learning
control algorithm, a robust iterative learning control and a recently proposed conventional norm-
optimal iterative learning control algorithm. Although significant improvements in performance
are made compared to the conventional norm-optimal iterative learning control algorithm with a
small learning factor, for the developed approach as well as the robust iterative learning control
algorithm small steady state errors occur.
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1. INTRODUCTION

Doherty (2003) states that the human aging process re-
sults in a significant decline of neuromuscular function
evidenced by a reduction in muscle mass and loss of
strength, which occurs even in the healthy elderly. For
this reason, regular training is essential for the prevention
and therapy of age and wealth-related diseases. To reduce
the risk of training-induced injuries, the forces applied to
the musculoskeletal system as well as the velocity along
the motion trajectory and the range of motion have to
be monitored and controlled continuously. To address this
issue, an experimental research platform, consisting of
an industrial robot, a force plate and a motion capture
system has been set up at the German Sport University
in Cologne (Kolditz et al., 2015). The replacement of the
force plate mounted at the robot’s end effector allows
the execution of different training scenarios. However, in
this case the setup is used as a leg press training device,
because the leg extension/flexion during leg press training
is a multi-articular movement allowing flexibility of muscle
activation and control. As high external knee adduction
moments reflect high loadings of the medial compartment
influencing the development and progression of e.g. os-
teoarthritis (Kutzner et al., 2013; Trepczynski et al., 2014),
high external knee adduction moments shall be prevented.

Kolditz et al. (2016) proved in previous work that the
foot position and orientation can be used as manipulated
variables to control knee joint loadings. Based on these
findings, Ketelhut et al. (2019) present a norm-optimal
iterative learning control (NOILC) algorithm addressing
the control of knee joint loadings during the leg extensi-
on training with an industrial robot. There exist various
other control mechanisms of lower limb rehabilitation ro-
bots (Meng et al., 2015), but these only obtain asymptotic
convergence, which guarantees tracking performance at
the steady state, when the time horizon goes to infinity.

NOILC algorithms use the repetitive nature of systems
to adapt the subsequent control signal sequence based on
the previous one. Thus, excellent tracking performance can
be obtained from the very beginning of a cycle as stated
by Xu and Tan (2003). Apart from this, NOILC schemes
are robust against repetitive disturbances while no exact
model of the system’s dynamics is required. The results il-
lustrate that the algorithm is able to minimize the external
knee joint loadings for patients with different alignments
of the knee (Ketelhut et al., 2019). However, even with
a badly-modeled plant, the required performance can be
effectively achieved as the trail number increases (Moore
et al., 2005). The reason for this is, that the NOILC is
assumed to be inherently robust (Donkers et al., 2008)
due to e.g. the learning factor. The learning factor is used
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to scale the optimal control signal sequence changes and
thus compensate for model uncertainties, while yielding
an adequate level of convergence. If the prediction model
perfectly fits the system’s dynamics, the learning factor
can be chosen equal to one. In this case, the algorithm
should converge within one cycle. Otherwise high learning
factors result in oscillations or may even destabilize the
system. Whereas if the system’s dynamics are known ex-
actly, no learning-based methods are required and rather
direct methods could be used (Bristow et al., 2006). As
this is usually not the case in e.g. medical applications
and Son et al. (2013) explain that model uncertainty de-
grades convergence and performance, accounting for model
uncertainty in the NOILC design is crucial. Apart from the
imprecise model knowledge, ILC algorithms are usually
applied to systems with nonlinear and parasitic dynamics.
Furthermore, disturbances that vary from trial to trial and
initialization errors (Chen et al., 1996) occur. (Owens and
Feng, 2003)

The aim of this paper is to design an adaptive iterative
learning control algorithm based on a robust ILC scheme
to minimize the knee joint loadings during the leg extensi-
on training with an industrial robot. An ILC is considered
to be robust if, despite the presence of model uncertain-
ties and disturbances, convergence can be obtained and
no steady-state error occurs. NOILC algorithms are on-
ly simple feed-forward control schemes in time domain.
Feedback is only incorporated in the iteration domain.
Thus, for the rejection of instantaneous disturbances, the
ILC can be combined with e.g. a feedback controller as
suggested by Rüschen et al. (2017) to address model un-
certainties (Doh, 1999) as well as non-repetitive disturban-
ces (Chin et al., 2004). Furthermore, there exist several
different attempts by researchers such as Harte et al.
(2005), Longman (2000) and Son et al. (2013) to derive
convergence conditions for inverse model-based ILC, itera-
tive learning and repetitive control and gradient-based ILC
schemes, respectively. Apart from this, in the literature
there are many ILC designs presented, which explicitly
account for model uncertainties to improve robustness and
convergence. Bristow and Alleyne (2005) present a time-
varying low-pass Q-filter in the learning algorithm to en-
hance robustness of a simple P-type ILC scheme. Nguyen
and Banjerdpongchai (2011) investigate a robust iterative
learning controller design with a parametric uncertainty
model to address time-varying uncertainties. In a higher
order ILC (HOILC), the information of several previous
cycles instead of just the last one is used to determine the
control signal sequence for the subsequent cycle. This is
especially beneficial if disturbances occur that vary from
trial to trial or the system’s dynamics are not consistent.
For examples of HOILC algorithms refer to (Moore et al.,
2005). Moreover, there exist several different H∞ ILC
algorithms (de Roover, 1996), combinations with distur-
bance observers (Kim et al., 1996) and stochastic-control-
based ILC schemes (Saab, 2001). While the stochastic
approach is mainly focused on measurement noise, the
H∞ approach can be used to determine the optimal filter
as well as weighting matrices of the quadratic optimiza-
tion problem (Van De Wijdeven et al., 2011). As stated
by Ge et al. (2016), the ideal design of weighting matrices
ensures monotonic convergence while maximizing conver-
gence speed and minimizing steady-state errors. Today’s

methods to determine these weighting matrices however,
either lead to conservative performance or require manual
tuning. While Donkers et al. (2008) only consider additive
uncertainty, the approach can be expanded to take also
multiplicative uncertainty into account (Van de Wijdeven
et al., 2009). Taking the finite time interval and existence
of analytical solutions into consideration, Van De Wijde-
ven et al. (2011) present a robust worst-case ILC approach
based on H∞, which also allows for noncausal solutions.
Son et al. (2013) propose a similar approach formulated
as min-max problem to determine the worst-case value of
the cost function under model uncertainty, thus yielding a
dual minimization problem. This approach also accounts
for time-varying uncertainties and can be formulated as
convex optimization problem, yielding a global optimal
solution.

In this paper, an adaptive optimal ILC algorithm based
on (Son et al., 2013) is proposed. The aim of the algorithm
is to minimize the knee joint loadings during the leg
extension training with an industrial robot. The response
of the algorithm is tested in simulation for different patient
models and compared to the results of a HOILC, a NOILC
and the ROILC algorithm presented by Son et al. (2013).

2. METHODS

In previous work, Ketelhut et al. (2019) proved that a
NOILC algorithm is able to minimize knee joint loadings
during the leg extension training with an industrial robot.
As in the previous work, here the controller aims at
minimizing the knee joint moment M , while the knee
joint flexion angle Θ moves smoothly along a predefined
trajectory to prevent jerks. Plate angle α and Cartesian
position in y-direction y serve as controller outputs. To
estimate the joint loadings, a setup consisting of the
previously described experimental research platform, a
motion capturing system and a musculoskeletal lower
extremity model, implemented in OpenSim (Delp et al.,
2007) has been found suitable (Kolditz et al., 2016).
For further details regarding the musculoskeletal lower
extremity model refer to (Ketelhut et al., 2019). In this
paper however, the algorithm is only tested in simulation
to obtain a proof of concept.

2.1 Iterative Learning Control

In an ILC algorithm, the control signal sequence for the
subsequent cycle

uj+1 = uj + ∆uj+1 (1)

is calculated as the sum of the control signal sequence of
the previous cycle plus the vector of control signal sequence
changes ∆uj+1 ∈ Rl(N+1). In this paper, controller inputs
and outputs during cycle j

yj =[Mj(0),Θj(0), ... (2)

Mj(N),Θj(N)]T ∈ Rm(N+1)

uj =[αj(0), yj(0), ... (3)

αj(N), yj(N)]T ∈ Rl(N+1)

are sequences with N+1 samples per m controller outputs
or l inputs and the time index k ∈ {0, 1, .., N}, which
wraps back to zero at the beginning of a new cycle.
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Controller inputs are right external knee joint moment
M(k) and knee joint flexion angle Θ(k), while the plate
angle α(k) and Cartesian position in y-direction y(k)
serve as corresponding outputs. For further information
regarding ILC algorithms in general refer to the work of Xu
and Tan (2003).

2.2 Higher Order Iterative Learning Control

In a simple P-type ILC scheme, the control signal sequence
changes

∆uj+1 = Γ ej , (4)

are calculated by the diagonal learning gain matrix Γ =
diag(η) ∈ Rm(N+1)×m(N+1) with the learning factor η =
[0, 1] times the tracking error

ej = r− yj , (5)

with the reference

r =[rM(0), rΘ(0), ... (6)

rM(N), rΘ(N)]T ∈ Rm(N+1).

In this case, the external knee joint moment shall be
minimized. Thus, the corresponding reference rM =
[rM(0), rM(1), ... rM(N)]T = 0 is set to zero for all cy-
cles. The knee joint flexion angle on the other hand shall
only change smoothly and uncomfortable jerks shall be
prevented. To obtain this performance, the corresponding
reference is defined as fourth-order polynomial

rΘ(t) = c4t
4 + c3t

3 + c2t
2 + c1t+ c0 (7)

with c4 = 0.3332
◦

s4 , c3 = −4.6647
◦

s3 , c2 = 16.3265
◦

s2 ,

c1 = 0
◦

s and c0 = −70◦ and the time t in seconds.
To improve the robustness of the algorithm described in
eq. (4), the information of several previous cycles instead
of just the last one can be used to determine the control
signal sequence for the subsequent cycle, yielding

∆uj+1 =

j∑
p=j−g

Γp−g ep (8)

with the diagonal learning gain matrices Γp = diag(ηp−g) ∈
Rm(N+1)×m(N+1) and the learning factors ηp−g = [0, 1]
for p = j − g, where g denotes the number of additional
past cycles used. As mentioned before, the usage of several
cycles from the past is beneficial if disturbances occur that
vary from trial to trial or the system’s dynamics change,
thus improving the ILC’s robustness. In this work the last
three cycles are used to calculate the subsequent control
signal sequence, thus g = 2.

2.3 Adaptive Optimal Iterative Learning Control

The following explanation of the adaptive optimal iterative
learning algorithm closely follows the description of Son
et al. (2013) and Son et al. (2014). The designed AOILC
scheme considers a linear time-invariant multi-input multi-
output (MIMO) system subject to additive uncertainty in
this case. In the AOILC approach, the vector of control
signal sequence changes ∆uj+1 = ∆uopt,j+1 is the result
of a quadratic optimization problem

min
∆uopt,j+1,λj+1

Jdual(∆uopt,j+1, λj+1) (9a)

s.t. λj+1I−Qe ≥ 0 (9b)

Qeêj+1 ∈ R(Qe − λj+1I) (9c)

umin ≤ uj+1 ≤ umax (9d)

δumin ≤Mδuj+1 ≤ δumax (9e)

where Jdual denotes the nonlinear dual cost function,
which reads

Jdual(∆uj+1, λj+1) =‖êj+1‖2Qj+1
+ ‖∆uj+1‖2Rj+1

(10)

with the weighting matrices

Qj+1(λj+1) =(Q−1
e − λ−1

j+1I)† (11)

Rj+1(λj+1) =λj+1W
T
j+1Wj+1 + Qδ, (12)

where (Q−1
e −λ−1

j+1I)† is the pseudoinverse of Q−1
e −λ−1

j+1I.

The first cost function term in eq. (10) penalizes the
predicted tracking error without uncertainty

êj+1 = ej −G∆uopt,j+1, (13)

while the second one prevents severe changes of the control
signal sequence between two consecutive cycles. The im-
pulse response matrix G for linear time-invariant systems
is of the form

G =


0 0 . . . 0

CBd 0 . . . 0

CAdBd CBd
. . .

...
...

...
. . .

...
CAN−2

d Bd CAN−3
d Bd . . . . . . 0

 (14)

∈ Rm(N+1)×l(N+1) ,

where Ad ∈ Rn×n, Bd ∈ Rn×l and Cd ∈ Rm×n refer
to the discrete system, input and output matrix with
n states, respectively. In this case, G approximates the
relation between plate angle α(t) and external knee joint
moment M(t) and between Cartesian coordinate in y-
direction y(t) and knee joint flexion angle Θ(t) as first-
order systems equivalent to Barton and Alleyne (2010)
and Ketelhut et al. (2019). The parameters are determined
by parameter estimation using data from simulative step
response experiments with the normal knee alignment
patient model. According to Son et al. (2013) the pro-
posed ROILC problem can be interpreted as classical
NOILC algorithm with trial-by-trial updated weighting
matrices based on the additive uncertainty weight Wj+1 ∈
Rm(N+1)×l(N+1) and the scalar λj+1 times the identity

matrix I ∈ Rm(N+1)×m(N+1). The additive uncertainty
weight Wj+1 can be identified as transfer function that
is an upper bound on the difference between the measured
data and the system models. This is done once previously
for the ROILC to account for all three patient models and
iteratively after each iteration for the AOILC algorithm
to improve the performance of the control algorithm. The
diagonal weighting matrices Qe ∈ Rm(N+1)×m(N+1) and
Qδ ∈ Rl(N+1)×l(N+1) represent the (initial) weighting of
the cost function terms without uncertainty. The notation
‖p‖2Qi

= pTQip is the squared euclidean norm of p
weighted with the positive semidefinite matrix

Qi = diag

[
qα,i 0
0 qy,i

]
(15)

and the tuning parameter qα,i and qy,i for i = e,δ.
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Knee adduction

0◦
flexion angle

Knee joint
Plate angle α

Cartesian position

Θ

moment M

in y-direction y

(a) Robot and lower extremity musculoskeletal model with knee
adduction moment M (red), knee joint flexion angle Θ (blue),
plate angle α (green) and Cartesian position in y-direction y
(black) in OpenSim.

Varus Normal Valgus

(b) Patient models with varus, normal and valgus
alignment of the knee with knee adduction mo-
ments (red).

Fig. 3. Lower extremity musculoskeletal models to simulate patients implemented in OpenSim.

The plate angle α(t) as well as the Cartesian coordinate
in y-direction y(t) are limited by a lower

umin =[uα,min, uy,min, ..., uα,min, uy,min]T ∈ Rl(N+1) (16)

and an upper

umax =[uα,max, uy,max, ... (17)

uα,max, uy,max]T ∈ Rl(N+1)

boundary with the constraints uα,min, uy,min and uα,max,
uy,max. Moreover, the control signal sequence changes
within an iteration are restricted by

δumin =[δuα,min, δuy,min, ... (18)

δuα,min, δuy,min]T ∈ Rl(N+1)

and

δumax =[δuα,max, δuy,max, ... (19)

δuα,max, δuy,max]T ∈ Rl(N+1)

to prevent severe changes of the control signal sequence.
The numerical gradient of uj+1 is obtained through the
multiplication with

Mδ =



0 0 . . . 0 0

−1 1
. . .

...
...

0 −1
. . . 0

...
... 0

. . . 1 0
0 0 . . . −1 1


∈ Rl(N+1)×l(N+1). (20)

For the detailed derivation of the optimization problem
refer to Appendix A or to (Son et al., 2013).

3. RESULTS

3.1 Simulation Setup

To test the response of the designed adaptive ROILC
algorithm described in Section 2.3, the musculoskeletal
lower extremity model described in (Kolditz et al., 2015)
is implemented in OpenSim (Delp et al., 2007) and patient
models with a varus, normal and valgus alignment of
the knee are created, see Fig. 3. Usually people have a
femoral-tibial angle about 175◦, while it is much smaller
for people with valgus (<−3◦) and higher for people with

varus knees (>6◦) as stated by Schnüke et al. (2009). In
this case, femoral-tibial angles with deviations of ±10◦

are applied to simulate the patient with varus and valgus
alignment. The adaptive ROILC algorithm is implemented
in MATLAB and the ipopt solver in CasADi is used for
the nonlinear optimization. CasADi is an open source soft-
ware framework for numerical optimization (Andersson
et al., 2019). During the simulation, the magnitude of the
reaction force, which acts orthogonally to the force plate,
and the corresponding center of pressure are assumed to
remain constant (Force = 1000 N). In four simulations,
the tracking performance and disturbance rejection of the
proposed adaptive ROILC algorithm is tested and com-
pared to the results of the conventional NOILC algorithm
presented by Ketelhut et al. (2019), the HOILC algorithm
described in Section 2.2 and the ROILC algorithm with
a constant uncertainty weighting W by Son et al. (2013).
For the control parameters used in the simulations refer to
Tab. B.1.

3.2 Simulation Results

Fig. 4 shows the external knee joint moment M as well
as the corresponding plate α and knee angle Θ and the
Cartesian position in y-direction of a patient with normal
knees as representative of all three patient models, see
Fig. 3. The AOILC response in cycle 1, 3, 5 and 10 is
illustrated as solid blue, dashed red, yellow and dotted
purple line, respectively. Moreover, the knee angle refe-
rence rΘ is displayed as dash-dotted black line. While the
external knee joint moment reaches a maximal value of
8.4 Nm during the first cycle, the AOILC algorithm is
able to reduce it significantly after 2 iterations. The ad-
aptive ROILC requires 2 iterations to reduce the maximal
external knee joint moment deviation below 1 Nm and
3 iterations until it finally converges (root mean square
variation of the plate angle below 0.01◦). The maximum
absolute errors amount to 8.4 Nm and 12.3◦ knee angle.
The corresponding root mean square errors (RMSE) for
all three patient models (varus, normal and valgus) are
shown in Fig. 5. The RMSE of the external knee joint
moment for the patient with varus, normal and valgus
alignment are displayed on the top, in the middle and in
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Fig. 4. External knee joint moment M (top left), corresponding plate angle α (top right), knee angle Θ (bottom left)
and Cartesian position in y-direction (bottom right) of a patient with normal knees illustrated in Fig. 3 with the
AOILC algorithm over time for cycle 1, 3, 5 and 7.
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Fig. 5. Root mean square error of patient with varus (top),
normal (middle) and valgus (bottom) knee alignment
illustrated in Fig. 3 controlled by NOILC, ROILC,
HOILC and adaptive ROILC algorithm over multiple
iterations.

the bottom, respectively. The results obtained with the
ROILC algorithm, the conventional NOILC, the AOILC
and the HOILC are illustrated as solid blue, dashed red,
solid yellow and dotted purple line, respectively. The re-
sults show that compared to the patient model with the
normal knee alignment, the initial RMSE of the patient
model with varus and valgus alignment is much higher.
Nevertheless, all four algorithms only require few iterations
to reduce the RMSE significantly. The AOILC as well as
the conventional ROILC algorithm though, are 2−3 itera-
tions faster compared to the conventional NOILC scheme
for the patient with varus and normal knee alignment
due to the learning factor. The HOILC compared to the
NOILC scheme also takes less iterations to converge, but
no boundary constraints and cost function can be defined.
In this case, additional limitations are required to ensure
the safety of the patients. Nevertheless, the NOILC and
HOILC scheme for the patient with valgus knee alignment
are 1−2 iterations faster than the the AOILC and ROILC
algorithms even though this is the patient model with the
highest model uncertainties. Apart from this, compared
to the HOILC and NOILC algorithm small steady-state
errors occur, as λj+1 → ∞ for j → ∞ (Son et al., 2014).
Consequently, ‖Rj+1(λj+1)‖ increases to very large values
and thus changes of the optimal control signal sequence
are severely punished.

4. CONCLUSION

In this paper an AOILC algorithm is proposed to minimize
the knee joint loadings during the leg extension training
with an industrial robot. The algorithm inherently ac-
counts for additive model uncertainty by adjusting the
weighting matrices in each iteration. For this purpose,
a worst-case performance index under additive variable
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weighted uncertainty is minimized yielding a nonlinear
dual optimization problem. For the simulative validation
of the presented control algorithm three different patient
models with varus, normal and valgus alignment of the
knee are used. The results illustrate that the AOILC algo-
rithm compared to the NOILC and the ROILC algorithm
with constant uncertainty weighting yield improved per-
formance. However, in contrast to the NOILC algorithm a
minimal steady-state error occurs. To validate the findings,
further investigations with real patients training at the
experimental research platform are required. Moreover,
the accuracy of the uncertainty weighting could also be
improved based on experimental data. So far, the direct
measurement of knee joint forces is only possible in pati-
ents receiving total knee arthroplasty. Thus, a model mis-
match between the OpenSim model and the real patient
may result in an incorrect estimation of the external knee
joint moment. To incorporate the AOILC algorithm in all
training scenarios realized on the experimental research
platform, the definition of the system’s dynamics as func-
tion of the way along the path instead of time might be
favorable.
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Appendix A. ADAPTIVE ITERATIVE LEARNING
CONTROL

The following derivation of the adaptive optimal iterative
learning algorithm closely follows the description of Son
et al. (2013) and Son et al. (2014). Consider an AOILC
approach, where the vector of control signal sequence
changes ∆uj+1 = ∆uopt,j+1 is the result of the quadratic
optimization problem

min
∆uopt,j+1

max
∆

J(∆uopt,j+1,∆), (A.1)

with the cost function

J(∆uj+1,∆) =‖r− ŷj+1‖2Qe
+ ‖∆uopt,j+1‖2Qδ

.

The first cost function term penalizes the predicted
tracking error considering uncertainty, while the second
one prevents severe changes of the control signal sequence
between two consecutive cycles. The controlled variable
sequence of the subsequent cycle

ŷj+1 = yj + (G + ∆Wj+1)∆uopt,j+1 (A.2)

is predicted as the sum of the measured controlled variable
sequence during the previous cycle yj and the impulse
response matrix G. To account for model uncertainties,

an additive uncertainty ∆ ∈ Rm(N+1)×m(N+1), where
‖∆‖ ≤ 1, with the weight Wj+1 is added to (A.2).

To find the worst case cost function (A.1) with respect to
∆, the maximization problem

max
vj+1

‖ êj+1 − vj+1︸ ︷︷ ︸
r−ŷj+1

‖2Qe
(A.3)

subject to ‖∆‖ ≤ 1 can be solved, with

vj+1 = ∆Wj+1∆uopt,j+1 (A.4)

similar to (Son et al., 2013). The other cost function
term in (A.1) does not rely on ∆. Reformulation of the
constraint ‖∆‖ ≤ 1 as

‖vj+1‖2 ≤ ‖Wj+1∆uopt,j+1‖2 (A.5)

and introducing the Lagrangian multiplier λj+1 yields the
Lagrangian function

L(vj+1, λj+1) = ‖êj+1 − vj+1‖2Qe
(A.6)

+ λj+1(‖Wj+1∆uopt,j+1‖2 − ‖vj+1‖2).

The solution corresponding to the original constrained
optimization is the maximum of the Lagrangian function.
Thus, the partial derivatives of (A.6) with respect to vj+1

have to fulfill
∂L

∂vj+1
= −2êj+1Qe + 2(Qe − λj+1I)v∗j+1 = 0 (A.7)

and
∂2L

∂vj+1∂v∗j+1

= (Qe − λj+1I) ≤ 0 (A.8)

yielding
v∗j+1 = (Qe − λj+1I)†Qeêj+1 (A.9)

with λj+1I − Qe ≥ 0 due to the second order partial
derivative (A.8) and Qeêj+1 ∈ R(Qe − λj+1I) to solve
the equation problem, where R(Qe − λj+1I) is the range
of Qe − λj+1I. According to this, the Lagrangian dual
function

g(λj+1) =


L(v∗j+1, λj+1) λj+1I−Qe ≥ 0,

Qeêj+1 ∈ R(Qe − λj+1I)

+∞ otherwise
(A.10)

is derived, where

L(v∗j+1, λj+1) =êTj+1(Q−1
e − λ−1

j+1I)†êj+1 (A.11)

+ λj+1‖Wj+1∆uopt,j+1‖2

and (Qe − λj+1I)† is the pseudoinverse of Qe − λj+1I. As
a result, the maximization problem in (A.3) can also be
defined as

min
λj+1

g(λj+1) (A.12a)

s.t. λj+1I−Qe ≥ 0 (A.12b)

Qeêj+1 ∈ R(Qe − λj+1I) (A.12c)

and combined with the minimization problem in (A.1) to

min
∆uopt,j+1,λj+1

Jdual(∆uopt,j+1, λj+1) (A.13a)

s.t. λj+1I−Qe ≥ 0 (A.13b)

Qeêj+1 ∈ R(Qe − λj+1I) (A.13c)

where Jdual denotes the nonlinear dual cost function,
which reads

Jdual(∆uj+1, λj+1) = êTj+1(Q−1
e − λ−1

j+1I)†êj+1 (A.14)

+λj+1‖Wj+1∆uopt,j+1‖2 + ‖∆uopt,j+1‖2Qδ
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Rearranging of (A.14) yields the dual cost function descri-
bed in Section 2.3

Jdual(∆uj+1, λj+1) =‖êj+1‖2Qj+1
(A.15)

+ ‖∆uopt,j+1‖2Rj+1
(A.16)

with the weighting matrices

Qj+1(λj+1) =(Q−1
e − λ−1

j+1I)†, (A.17)

Rj+1(λj+1) =λj+1W
TW + Qδ. (A.18)

Appendix B. CONTROL PARAMETERS

Tab. B.1 includes the parameters of the HOILC and
AOILC algorithm described in Section 2.2 and Section 2.3
as well as the parameters of the conventional NOILC
algorithm presented by Ketelhut et al. (2019).

Tab. B.1. Parameters of different control algorithms used
for simulation.

Description Symbol Value Unit

Cycle duration Tc 7 s

Sample Time Ts 0.1 s

Lower boundary α uα,min -2.5 ◦

Upper boundary α uα,max 2.5 ◦

Proportional coefficient GΘ KΘ,y -600
◦

m

Time constant GΘ τΘ,y 0.01 s

Lower boundary y uy,min 0.655 m

Upper boundary y uy,max 0.8 m

Proportional coefficient GM KM,α −11.45 Nm
◦

Time constant GM τM,α 0.1 s

NOILC

Learning factor η 0.7 -

Deviation weight qe 10 -

Gradient weight qδ 1000 -

ROILC

Deviation weight α qα,e 1 -

Learning weight α qα,δ 10−3 -

Deviation weight y qy,e 1 -

Learning weight y qy,δ 10−3 -

Lower boundary change of α
during cycle

δuα,min -0.3
◦

s

Upper boundary change of α
during cycle

δuα,max 0.3
◦

s

Lower boundary change of y
during cycle

δuy,min -0.02
◦

s

Upper boundary change of y
during cycle

δuy,max 0.02
◦

s

HOILC

Number of additional past
cycles used

g 2 -

Learning factor last cycle η1 0.08 -

Learning factor second-last
cycle

η2 0.001 -

Learning factor third-last cy-
cle

η3 0.0005 -
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