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Abstract: In many mechatronic applications, controller input costs are negligible and time
optimality is of great importance. As a result, the obtained control input has mostly a bang-
bang nature, which excite undesired mechanical vibrations, especially in systems with flexible
structures. This paper tackles the time-optimal control problem and proposes a novel approach,
which explicitly addresses the vibrational behavior in the context of the receding horizon
technique. Such technique is a key feature, especially for systems with a time-varying vibrational
behavior. In the context of model predictive control (MPC), vibrational behavior is predicted and
coped in a soft-constrained formulation, which penalize any violation of undesired vibrations.
This formulation enlarges the feasibility on a wide operating range in comparison with a hard-
constrained formulation. The closed-loop performance of this approach is demonstrated on a
numerical example of stacker crane with high degree of flexibility.

1. INTRODUCTION

For time-optimal control, well-known solutions established
by Pontryagyn’s maximum principle provides sufficient
and necessary conditions for the bang-bang property of the
optimal control inputs. Classical solution techniques are
based on indirect methods with explicit control law. For
nonlinear systems, numerical solutions became inevitable.
The first extensions to nonlinear model predictive control
(NMPC) distinguished between the direct and indirect
methods to obtain a numerical solution of the optimal con-
trol problem (OCP). This paper focuses on time-optimal
control of discrete nonlinear dynamic systems using direct
methods. Some previous studies dealt with time-optimal
control problems (time-OCP) in the context of model
predictive control (MPC). An extended overview is given
in Ismail and Liu (2020). Zhao et al. (2004) introduced a
quasi time-optimal NMPC, which is formulated in stan-
dard regulator NMPC form, with time-dependency on the
terminal cost and fixed horizon length. Verschueren et al.
(2016a) computed time-optimal motions along a Cartesian
path for robotic manipulators and in Verschueren et al.
(2016b) the time-OCP was stated in a path-parametric
formulation to compute motions around a periodic optimal
trajectory for a race car. Rösmann et al. (2017) used a
dynamic grid time-optimal control formulation to reduce
the number of control interventions. Especially in the
domain of vibration control, recently NMPC gained an
increasing attention to replace the widely established input
shaping. Input shaping is generated for a specific frequency
and damping ratio and cannot deal with time-varying fre-
quencies. The present paper presents a novel time-optimal
NMPC approach for point-to-point transitions of nonlinear
dynamic systems in a soft-constrained NMPC framework.
This approach addresses the issue of vibrations, that arise
especially for bodies with high degree of flexibility. The
application of this paper deals with stacker cranes (STCs),

which are tasked to maximize the productivity by execut-
ing fast and accurate positioning maneuvers. Additionally
promoted from the mast flexible and slender form of the
beam, time-optimal control with bang-bang nature may,
however, excite undesired residual mode vibrations or ex-
cite undesired resonance frequencies. Furthermore, STCs
have a time-varying vibrational behavior due to the vari-
able lift load in position and weight. The model used here
captures the steadily changing vibrational behavior of the
STC and has nonlinear dynamics. This paper extends the
frame of the active vibration damping control conducted
using a soft-constrained NMPC, proposed in Ismail and
Liu (2019b), however, with time-optimal objectives.

Contribution: The main contribution of this paper is the
introduction of soft-constrained time-optimal NMPC. In
this configuration, undesired vibrations, typically resulting
from the aggressive optimal control input are addressed
explicitly and considered with soft-constraints. Dealing
with undesired vibrations as soft-constraints enlarge the
feasibility domain, especially for mechanical systems with
low resonance frequencies. The proposed approach is ap-
plied on two types of time-OCP. To the best of author’s
knowledge, this study is the first attempt to present a soft-
constrained time-optimal NMPC.
The rest of the paper is structured as follows: Section
2 provides some preliminaries and introduces some in-
gredients, which are used in Section 3. In Section 3 the
proposed approach is detailed. Section 5 and Section 6
shows the simulation results on two numerical problems.
Finally, Section 7 provides a conclusion.

2. PRELIMINARIES

2.1 Mathematical Notations

Let I denote the set of non-negative integers. For n,m ∈ I∪
{∞}, let I≥0 and In:m denote the sets {r ∈ I : n ≤ r ≤

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 6128



m}, respectively. Similarly, R≥0 denote the non-negative
real numbers, Rn are real valued n-vectors, PN (x, r) is
an MPC optimization problem with horizon N , initial
state x and reference r. ||.|| and ‖.‖∞ are the l2 and
the l∞ norms. A set A ⊂ Rn is a C-set, if it is convex
and contains the origin. A convex H-polytope denotes a
bounded intersection of q closed half-spaces P = {x ∈
Rn : Cx ≤ d,C ∈ Rq×n, d ∈ Rq}. ⊗ is the Kronecker
product. I is the unity matrix.

2.2 Problem Statement

Now consider a discrete time system dynamic, described
as,

xk+1 = f(xk, uk), with x(0) = x0, (1)

where f(.) : Rn ×Rm → Rn and f(0, 0) = 0, with k ∈ I≥0

as the discrete time index, xk ∈ X ⊂ Rn is the state
variable, uk ∈ U ⊂ Rm is the control input. X , U are
state-, input sets, respectively, which are assumed to be
known exactly and are PC-polytopic sets, respectively.
xk := φ(k;x0,u) is the solution of (1) at time k with initial
state x0 and input sequence u. More general hard mixed
constraints Z ⊆ X × U are imposed on the state-input
space, given in polytopic representation,

(xk, uk) ∈ Z := Cxxk +Duuk ≤ E , k ∈ I≥0, (2)

with Cx ∈ Rne×n,Du ∈ Rne×m and E ∈ Rne to be the
matrix element of the polytope in state-input space given
in H-representation. N is a given integer i.e. horizon. Ad-
ditionally, a polytopic terminal constraint set is introduced
as,

Xf := Gxxk ≤ F , k ∈ IN :∞, (3)

with Gx ∈ Rnf×n,F ∈ Rnf , which specifies the hyper-
planes bounding of xN ∈ Xf ⊂ X . The purpose of the
controller is to smoothly steer a system from some initial
state x0 to a neighborhood of a terminal set Xf ∈ X
within a minimal transition time T and with the minimal
possible vibrations, while satisfying the given input and
state constraints. For point-to-point motions Xf ∈ xf with
xf ∈ X as the terminal state. The controller objective of
fast maneuver transitions and minimal vibrational damp-
ing has an antagonistic nature.

2.3 Vibrational Frequencies Prediction

The idea of vibration damping control based on predictive
control leads naturally to the idea of vibrational pre-
diction, which is incorporated in the NMPC in Section
3.2. Due to parameter variations e.g. position of a crane
load, lot of systems experience time-varying vibrational
behavior and thus time-varying resonance frequencies. For
this, parameter variation %, are considered and (1) can be
rewritten as,

xk+1 = f(xk, uk, %k), with x(0) = x0. (4)

Starting from known initial value x0 and parameter set %0

and for a given input sequence, the differential equation
is solved numerically and the states prediction propagate
as xk := φ(k;x0, %0,u), k ∈ I0:N . Based on the state pre-
dictions, it is possible to predict the vibrational behavior
and the associated frequencies. Vibrational prediction is
carried out in this paper in terms of power spectral density
(PSD). The main idea of spectral analysis is to decompose

a signal into a sum of weighted signals, which allow to
access each frequency content separately. One of the most
commonly used method for estimating the power of a
signal is the Welch’s method, sometimes also referred as
the periodogram averaging method. Due to the sinusoidal
nature of vibrations a sinusoidal fitting function is applied
before conduction PSD, which enhance the signal quality
and thus the vibrational frequency prediction.

Assumption 1. For a finite horizon problem, it is assumed
that the optimization horizon N ∈ I≥0 is large enough
to conduct a good vibrational frequency prediction perfor-
mance and also to enforce convergence.

3. TIME-OPTIMAL MODEL PREDICTIVE
CONTROL

In this Section, the control problem, proposed in Section
2.2 as a time-OCP is tackled. It is well-known, that
time-OCPs are classically assigned to indirect methods,
by which variational problems are reduced i.e. according
to Pontryagin maximum principle into a boundary value
problem (BVP) with initial conditions on the state and
final conditions on the co-state. The resulting BVPs are
difficult and thus commonly solved numerically. Despite
the approaches, which use indirect methods for nonlinear
MPC implementations, like in Käpernick and Graichen
(2014), indirect methods still require a priori computations
and are therefore still less attractive for MPC. In contrast,
the efficient direct multiple shooting (MS) has become
popular as a highly competitive approach. MS provides
an approximated solution of the BVP. For this reason, MS
is applied in this paper to solve the time-OCP.

3.1 Time-OCP Formulation

In time-OCPs, it is required to minimize the travel time
t ∈ R0:T over a transition time T , which a system requires
to move from some initial state x0 to a neighborhood
of some terminal state xf ∈ Xf . This implies that the
total transition time T is considered as a decision variable,

such as min
x,u,T

∫ T

0
1dt

∆
= min

x,u,T
T . Using MS, the original

infinite time-OCP is transformed into a finite dimensional
nonlinear programming problem (NLP). On the one hand,
the time horizon is divided into N shooting intervals
[tk, tk+1], k ∈ I0,N−1. On the other hand, the control input
trajectory is parametrized by assuming it to be a piece-
wise constant signal over each interval. To ensure compli-
ance of continuity between subsequent intervals, additional
matching conditions are obtained which incorporate in the
NLP as equality condition. These matching conditions are
shooting nodes and are used in this paper. For the sake
of simplicity, however, these additional conditions are not
explicitly mentioned in the remainder of this paper. In
this paper, solutions with a receding horizon fashion are
targeted by repeatedly solving the NLP numerically. The
resulting time-OCP structure is given as,

PN (x0, .) : J ∗N = min
x,u,T

T (5a)

s.t. x(0) = x0, (5b)

xk+1 = f(xk, uk), (5c)

xN ∈ Xf ⊆ X , (5d)

(x,u)
∆
= (xk, xN , uk) ∈ Z, (5e)
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∀k ∈ I0:N−1. The solution of (5) is due to nonlinearity
certainly not unique, but the control is often still found to
have a bang-bang nature.

3.2 Quasi Time-Optimal NMPC

Linear time-scaling is an important technique to solve
time-OCPs, by which the free final time is transformed
to a fixed final time. This technique work around the fact
that the transition time T , which is considered as decision
variable is a priori not known. In addition, scaled time
provide an important property, by which the underlying
shooting interval size is independent of T and thus fixed.
Accordingly, both time variable and system dynamics
are scaled linearly by the optimization variable T . This
transformation is given as,

t(τ) := τT, ∀τ ∈ R0:1, (6)

with τ as the new pseudo-time variable. Accordingly, the
state and control become x(t(τ)) := x(τT ) and u(t(τ)) :=

u(τT ). Time-optimal objective become min
T

∫ 1

0
Tdτ . Sub-

sequently, corresponding ODE is transformed to,

dx(τ)

dτ
= f(x(t), u(t))T, ∀t ∈ R0:T ,

∆
= fs(x(τ), u(τ), T ), ∀τ ∈ R0:1. (7)

The time variable t ∈ R0:T with N shooting intervals
is mapped on R0:1 with the same number of shooting
intervals, however, each with a size of 1/N . Consequently,
numerical integration is conducted based on the new vari-
able τ , which is independent of decision variable T . One
idea to express the whole transition time T is given in Ver-
schueren (2018), by which a T is separated into a sequence
of decision variables Tk, each defined over a shooting
interval. The reason for this, is to preserve the shooting
structure and to guarantee a fixed sampling time. In the
context of NMPC, and in order to consider the vibrational
behavior and try to avoid the undesired ones, one might
consider undesired vibrations, like resonance frequencies as
hard constraints. However, especially mechanical systems
suffer mostly from comparable low vibrational and thus
low resonance frequencies. Therefore, such consideration
shrinks the operational domain. This can be avoided by
softening these constraints. Thus, the resonance frequen-
cies defined in (15) are considered as inequality constraints
with infeasible boundaries and relaxed by introduction of
slack variables sk,∀k ∈ I0:N . The purpose of relaxing these
inequality is twofold: first one, is to ensure feasibility of
the MPC problem in a large region of the state space by
tolerating temporary constraint violations; the second, is
to mitigate the impact of the bang-bang control appears
in context of time-OCP on excitation of the undesired
frequencies like resonance. Additionally, and according to
the technique given in Section 2.3, a vibrational frequency
prediction is repetitively conducted over each horizon to
estimate the future frequencies. To reduce any constraints
violation, the slack variables are penalized and included in
the cost function. Note that, in case of plant-model mis-
matches, tracking control with a simple and computational
cheap state-feedback optimal controller gain K of the dis-
crete Riccati equation would be necessary using the dual-
mode paradigm, i.e. Mode 1 (uk = Kxk, ∀k ∈ I0:N−1).
After reaching the neighborhood of terminal state xf ,

Mode 2 (uk = K(xk − x∗k) + u∗k, ∀k ∈ I≥N ) is activated.
The proposed soft-constrained NMPC problem denoted as
PN (x0, .) is formulated as:

J s
N

∆
= ‖sN‖2P +

N−1∑
k=0

Tk
N

+ ‖sk‖21
N ·S

PN (x0, .) : J ∗N = min
u,x,s,T

J s
N (u,x, s,T ) (8a)

s.t. x0 = x, (8b)

xk+1 = fs(xk, uk, %k, Tk), (8c)

E(xk, uk, %k)− Bp− ≥ −sk, (8d)

E(xk, uk, %k)− Bp+ ≤ sk, (8e)

Z := Cxxk +Duuk ≤ E , (8f)

(x,u)
∆
= (xk, xN , uk) ∈ Z, (8g)

(sk, sN , Tk) ≥ 0, (8h)

xN ∈ Xf ⊆ X , (8i)

∀k ∈ I0:N−1, where x ∈ Rn, u ∈ Rm, s ∈ Rs and
T ∈ R. Note that, fs is the discrete time representation of
the time-scaled dynamic from (7). Weighting are chosen
as, S ∈ Rs×s, S � 0 for the stage cost and P ∈
Rs×s, P � 0 for the terminal cost. Additionally, Z ⊆
X × U denotes the hard mixed constraints for admissible
state and control sets in the state-input space. Xf ⊆ X ,
defined as in (3), is a compact terminal set computed as
a positive control invariant set using the solution of the
discrete Riccati equation of the linearized system dynamics
in the vicinity of the terminal state xf . Furthermore,
E(xk, uk, %k) states the solution of the frequency prediction
from Section 2.3 and form together with the boundaries
(Bp−,B

p
+) of undesired frequencies in (8d) and (8e) the

soft inequality constraints. It is worth to mention that,
the underlying model for vibrational frequency prediction
uses beside open-loop state and input the variable %k
to conduct a prediction based on the non-scaled time
t ∈ R0:T to carry out a proper frequency prediction.
The inequalities describe the soft-constrained space, which
can be time-variant as in Section 4.2. Problem PN (x0, .)
induce implicitly a set of feasible state, slack and time
sequences x∗ : Rn 7→ RN×n, s∗ : Rs 7→ RN×s, T ∗ :
R 7→ RN respectively. Similarly, a set of feasible control
sequence u∗ = {u∗0, u∗1, . . . , u∗N−1}, with u∗ : Rm 7→
RN×m is induced. Only the first control entry of each
induced control sequences is applied to the plant as a
closed-loop control. After that, the optimization horizon is
shifted toward the next discrete time-instant in a receding
horizon fashion. However, to ensure a compliance with the
sampling-time Ts from the plant the time is rescaled by
N · Ts first T0 must be constraint to be equal N · Ts,
which is a rescale, while the remaining Tk are free, however
equidistant. Additional conditions to sustain equidistant
shooting intervals is not strictly necessary, whoever such
a condition prevents the solver from exploiting the time
scaling to creating shortcuts through constraints.

3.3 Quasi Time-Optimal NMPC with Free Final Time

For the sake of completeness, the idea of the soft-
constrained NMPC from Section 3.2 is carried out on the
mostly used quasi time-optimal control with free final time
T . Quasi time-optimal control contains a standard running
cost function with a quadratic form and free terminal time
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in the terminal cost. With appropriate weighting, time
optimality can dominate at the beginning of the trajectory.
Nevertheless, slightly modifications of the objective are
carried out here. This formulation addresses also mitiga-
tion of bang-bang control and thus limiting the excitation
of undesired vibrations. In contrast to the formulation in
the previous Section, this formulation does not employ a
time scaling and uses instead the discrete-time dynamics
. In the same manner as quasi time-optimal control, the
decision variable T is considered as a dummy state, which
is introduced in the terminal cost. Furthermore, the usual
class of quadratic objective is utilized for the stage cost
with the soft-constrained extension. The proposed soft
constrained NMPC problem denoted as PN (x0, .) is similar

to PQ
N (x0, .) in Section 3.2 and formulated as:

PQ
N (x0, .) : J s

N
∆
= JN (xT , sT ) +

N−1∑
k=0

lk(xk, uk, sk)

J q∗
N = min

u,x,s,T
J s
N (u,x, s, T ) (9a)

s.t. x0 = x, (9b)

xk+1 = f(xk, uk, %k), (9c)

(8d)− (8e), (9d)

(sk, sT , T ) ≥ 0, (9e)

xT ∈ Xf ⊆ X , (9f)

∀k ∈ I0:N−1, with JN
∆
= TF + ‖xN − xf‖2Q + ‖sN‖2P , lk

∆
=

‖xk−xs‖2Q+‖uk−us‖2R+‖sk‖2S . To guarantee convergence
with a finite prediction horizon, it is required that the state
reaches the desired endpoint at the end of the prediction
horizon. Compared to Section 3.2, additional weightings
are introduced, which are chosen as, Q ∈ Rn×n, Q �
0, R ∈ Rm×m, R � 0 for weighting the stage costs.
Additionally, P ∈ Rn×n, P � 0 and a scalar F for
weighting the terminal costs.

3.4 Stability and Recursive Feasibility

Recursive Feasibility is a necessary property to mimic the
infinite horizon MPC. However, time-optimal approaches
cannot ensure recursive feasibility, since the length of
shooting intervals decrease while the overall transition
time decrease during the closed-loop control, which is
also the case for time-transformation method. Fixing the
sampling time is more realistic, but it might even increase
this effect. Additional measurements of introduction of
time-varying terminal invariant sets or introduction of con-
trollable invariant sets, similar to the tubes used in robust
MPC, solve this problem. Furthermore, recursive feasibil-
ity cannot be guaranteed when the closed-loop control is
in the vicinity of the optimal transition, as a recent study
Rösmann et al. (2020) shows. However, in practice with
both, the introduction of Xf as a time-invariant terminal
set and fine shooting intervals, where optimality often
holds in an approximative manner recursive feasibility
might be implied. Time-invariant terminal set are conser-
vative, since the time-optimal problem is inherently time-
varying. Due to the difficulty in establishing of recursive
feasibility, no stability proofs exist so far. On the other
side, quasi time-optimal NMPC with free final time and
conventional quadratic cost function retains the properties
used for classical MPC, which makes recursive feasibility
and stability proofs easier to establish.

4. NUMERICAL CASE STUDY: STACKER CRANE

In this case study, the proposed soft-constrained time-
optimal NMPC is studied on a numerical example of a
stacker crane (STC) with high degree of flexibility. Some
key ingredients, which are used in the time-optimal NMPC
setup, are introduced firstly.

4.1 Dynamic

STCs are considered mostly as a single Euler-Bernoulli
beam with fixed boundary conditions and thus an a priori
known vibrational behavior. Moving lift position and load
changes lead to variable vibrational behavior. To capture
these changes a model of two Euler-Bernoulli beams with
time-varying boundary conditions was considered in Ismail
and Liu (2019a) and is adapted here. Fig. 1 depicts the
model of the STC. Both the carriage and the lift positions
are controllable in terms of actuation. The actuators apply
axial forces, denoted as F1 and F2. (xt, L), (xl, yl) and
(xc, 0) denote the coordinates of the tip, lift and carriage
respectively. EI represents the flexural rigidity. Also, de-
noted are the cross-sectional area of beam A and density
ρ. For the beam of length L, the spatial variable is given as
y ∈ R0:L. ω(y, t) = ωy denote the absolute axial deflection.
Carriage, lift and the tip mass are modeled as lumped
masses mc, ml and mt respectively. The flexibility of STC
is modeled as a distributed parameter system (DPS). The
control-oriented model gives a lumped form of the DPS
to obtain ordinary differential equations (ODEs). Accord-

Fig. 1. flexible stacker crane (right), illustration (left)

ingly, the spatial dependency in ω(y, t) is approximated by
two modes ai and two shape functions ψi as,

ω(y, t) =

2∑
i=1

ψi(y) · ai(t). (10)

With q(t) = (xc(t) yl(t) a1(t) a2(t))
T

the resulting equa-
tions of motion i.e. ODEs are rewritten as,

M(q)q̈ + C(q, q̇) +Kq = Fext, (11)

with the inertia matrix M(q) ∈ R4×4 : MT = M , the
coriolis matrix C(q, q̇) ∈ R4 and the stiffness matrix

K ∈ R4×4. Force is given as, Fext = (F1 F2 0 0)
T
. Details

are given in Ismail and Liu (2019a). Equations of motion
given in (11) are rearranged as in a lighter notation of
eight-order system, given as,

ẋ = f(x, u), with x(0) = x0, (12)
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4.2 Time-Varying Resonance Frequencies

Frequency responses and specifically resonance frequencies
are sensitive to the operational point of the lift yl and
to its mass ml. % = [ml, yl]

T denotes the parametric
variation of the mass as well as the operational range
of the lift, considered to be over a domain set D with
an upper and lower boundary (%, %) ∈ D ⊆ R2. Thus,
% ∈ [%, %], % ∈ R≥0 and is time-varying. In Ismail and
Liu (2019b) the sensitivity of resonance frequency due
to the parametric variation was studied. Accordingly, a
characteristic equation of a nonlinear algebraic equation
(NAE) nature is derived analytically, given as,

G(yl,ml,Ω) = 0. (13)

For each fixed pairs yl and ml, infinite solutions of res-
onance frequencies Ω ∈ R∞ are obtained. These solu-
tions are carried out numerically in terms of an iterative
nonlinear root finding. This provides a set of algebraic
hypersurfaces Ss : s ∈ I≥0, which are fully calculated
across the entire variation range of ml and the operating
range of yl. Each of these algebraic hypersurfaces is an
algebraic variety contained in affine space as,

S := {(ml, yl,Ω) ∈ R3 : ∀G ∈ S, G(yl,ml,Ω) = 0}. (14)

The boundaries (Bp−,B
p
+) are in the Minkowski spacetime

H, and thus time-variant.

4.3 Inequality Constraints: Over- and Under approximation

The purpose of providing a polynomial approximation is
twofold: first one, to replace the computational expansive
iterative nonlinear root finding by a polynomial function
with a cheap mapping; the second, to define an over
and under approximation boundaries of the resonance
frequency hypersurfaces. These boundaries are coped in
the optimization problem in Section 3.2 as infeasible in-
equality constraints. For the approximation the standard
approach of least squares has been carried out, by min-
imizing ‖Ss(%, %) − Pp(%, %)‖2. As a result, a satisfactory
approximation was achieved by a 5th order polynomial Pp.
The boundaries are defined as a lift-up and down of the
approximation,

Bp := {Bp− ≤ Pp ≤ Bp+ : ml, yl ∈ R≥0}, (15)

where Bp− = Pp − ξ and Bp+ = Pp + ξ are the lower and
upper boundaries respectively, with an offset ξ ≥ 0.

4.4 Frequencies Prediction

Due to the fact, that variable lift position and load lead to
time-varying vibrational behavior and thus time-varying
resonance frequencies, parameter variation %, given in
Section 4.2 are considered in (4). Let q̆ = [a1, a2]T ∈ Q̆
be a prediction vector of states a1 and a2. From (10) its
obvious that these states, together with the spatial variable
y describe the vibration of the beam in terms of axial
deflection. Based on the state predictions in Q̆ ∈ R2×N ,
it is possible to predict the vibrational behavior and the
associated frequencies.

5. RESULTS: STACKER CRANE

The optimal control problem (OCP), to move from an
initial state to some terminal state, is stated as a time-
OCP and solved in terms of NMPC in closed-loop control

fashion. The vibrational behavior is considered explicitly
to avoid undesired vibrational frequencies. Initial x0 and
terminal state xf are formulated as follows. Both, the
carriage and lift are required to move from mc = −0.5 m to
0 m and from yl = 0 m to 1 m, respectively, under an initial
deviation of the tip of ωt = 0.5 m. Moreover, the STC is
subject to constraints, such as on the carriage position
with ‖xc‖∞ ≤ 0.5 m, lift position 0 m ≤ |yl| ≤ 2 m and
control input ‖F‖∞ ≤ 30 N. Both the carriage and the lift
are actuated in terms of F1 and F2 respectively. In our sim-

ulation setup, both problems PN (x0, .) and PQ
N (x0, .), from

Section 3.3 and 3.2, are solved. For PN (x0, .), the weighting
matrices of the stage and terminal costs of the objective
function are chosen as S = P = 2 · 107 · I2 and F = 105,
with s ∈ R2. Subsequently, the remaining weighting matri-

ces from PQ
N (x0, .) are chosen as, Q = blkdiag{2000, 10}⊗

I4, and R = I2. xs = xf and us = 02×1. For (15) the
offset is considered as ξ = 10. Following parameter are
selected with corresponding SI units mc = 2.888 ,mt =
0.5 ,ml = 1 , L = 2 , A = 3.2 · 10−4 , ρ = 2700 , EI = 119.4 .
For NMPC scheme, a sampling time of Ts = 0.03 sec is
considered and the optimization horizon is equal to 17.
For the frequency prediction, and due to the sinusoidal
nature of beam vibrations a sinusoidal fitting function is
used before applying PSD, as in Section 2.3 for accuracy
improvement. Additionally, the corresponding window for
PSD has a Gaussian function. The simulation results of
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Fig. 2. active vibration damping control for STC with soft

NMPC due to PN (x0, .) (left) and PQ
N (x0, .) (right)

the soft-constrained NMPC is showed in Fig. 2 for both

problems PN (x0, .) and PQ
N (x0, .). The closed-loop results

with the corresponding states, control inputs, slack vari-
ables and costs are plotted. Note that, the purpose of
this simulation is to demonstrate the performance of the
soft-constrained time-optimal NMPC as an approach on
both time-optimal problems and not to draw a comparison
between both problems. Due to the different objectives and
weightings, no fair comparison can be established between
both problems. However, it is clear, that PN (x0, .) target

mainly the time optimality, while PQ
N (x0, .) target time op-
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timality while penalizing the state and control errors. For
both problems, terminal sets Xf are designed as a control
positive invariant set using the solution of the discrete Ric-
cati equation of the linearized system dynamics around the
terminal state xf to obtain recursive feasibility. The soft-
constrained formulation enlarges the feasible set compared
to an only hard constrained problem, which is under these
given conditions not feasible at all. According to Fig. 2,
during the position change of the lift yl, different resonance
frequencies were predicted. For both problems PN (x0, .)

and PQ
N (x0, .) the slack variables are active every time,

when the predicted frequencies violate the constraints.
The corresponding violation contributes, together with
the running and terminal costs, crucially into the cost.
The curve of slack variables shows a decreasing behavior
with some slumps, which are related to inaccuracy in
frequency prediction when open-loop trajectories change
the direction and it doesn’t oscillate enough. The curves
of the objectives are associated to the slack penalization,
which show similar behaviors. The time spent to reach
this terminal state is the resulting transition time T . After
that, the controller in the invariant set is active. Control
inputs (F1, F2) show the resulting forces on both lift and
cart. In the invariant set, the corresponding controller
holds the lift in its position by compensating the gravity.
To give an impression of the extent of our approach, a
point-to-point time-optimal simulation is conducted addi-
tionally and the corresponding states and inputs (dashed

gray) are plotted on both PN (x0, .) and PQ
N (x0, .). The

corresponding final states xf are reached after an optimal
transition time of T = 0.9133 sec, which is the shortest

compared to PN (x0, .), T = 0.9160 sec and PQ
N (x0, .). Both

soft-constrained NMPC trade a longer oscillation for less
frequency excitations. As a result, the control inputs mit-
igate slightly the usual bang-bang behavior, especially a
the corners between accelerations or decelerations. The
different of objectives in PN (x0, .) and PQ

N (x0, .) is visible
in the curve propagation of the cost, while in PN (x0, .)
only the slack and time propagation is apparent, the cost

in PQ
N (x0, .) contains additionally the state and control

errors, which decay smoothly. For the states xc, yl and
both a1, a2 in forms of ωt, a good convergence in terms
of closed-loop performance is shown. Starting with a big
initial deviation of the beam at the tip, the NMPC is able
to damp this vibration fast. Solutions obtained are feasible
for both, hard (red dashed) and soft constraints. The
computational effort is almost similar to a classical NMPC.
In summary, by changing the inequality constraints (8d)
and (8e) to include an arbitrary frequency, it can be shown,
that a selective frequency damping is possible using this
approach. For problem PN (x0, .) additional soft-constraint
on the movement frequency of yl can be introduced to
minimize such behavior. Note that, the frequency predic-
tion is conducted based on the open-loop state trajectories,
which have finite horizon and marginally different from the
closed-loop state trajectories.

6. ADDITIONAL CASE STUDY: FIXED BOUNDARY
FREQUENCIES

In this example a two degree-of-Freedom spring-mass sys-
tem with a simpler setup of fixed resonance frequen-
cies is considered. Two time-optimal NMPC problems

are solved. The first one is a classical time-OCP prob-
lem formulated in NMPC scheme and the second one is
the soft-constrained quasi time-optimal NMPC proposed
in 3.2. Details and results are given in Ismail and Liu
(2020). There it is observed, that time-optimal NMPC con-
verges faster, however with very small residual vibrations,
which induce a bang-bang control. In contrast, the soft-
constrained quasi time-optimal NMPC shows a mitigated
bang-bang behavior and cancel the residual vibrations.

7. CONCLUSION

In this paper a new time-optimal soft-constrained nonlin-
ear model predictive control scheme is presented and ap-
plied for the problem of active vibration damping control
of flexible stacker cranes. This scheme deals with problems
arising by classical time-optimal approach and the result-
ing bang-bang control input. In particular, the problem of
exciting undesired vibrations is addressed in this scheme.
The idea of the proposed scheme, is to define inequality
constraints for undesired frequencies. By future prediction
and constraints relaxation any violation is penalized in
the cost. By containing any arbitrary frequency also for
the state trajectory, this approach can be considered for a
selective frequency damping.
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