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Abstract: Alarm rationalization is a key element in ISA 18.2 alarm management lifecycle. During an 

abnormal event, alarms are generated in the control room to alert the operator of the affected regions in the 

process. An important objective of rationalization is to guide the operator troubleshoot quickly and help 

take necessary correction actions to restore normal operation. In this paper, the idea of representing the 

fault propagation path by the sequence of alarms generated by it, is explored. A model-based approach 

based on Hidden Markov Model (HMM) is proposed to predict the most likely cause of alarms using the 

alarm sequence generated. The probabilistic framework of HMM paves way to account for stochastic 

features of real plant operations that may arise due to random noises in sensors as well as the effect of fault 

magnitudes on sequences. The approach was applied to an industrial case study: Vinyl Acetate Monomer 

production process. The results show that the proposed approach was successful in predicting the probable 

cause of alarms generated with high accuracy. The model was able to predict the cause with reasonable 

accuracy even when tested with short alarm sub-sequences. This allows for early identification of faults, 

providing more time to the operator. 

Keywords: Alarm systems, Markov models, Probabilistic models, Fault diagnosis, Fault isolation, 
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1. INTRODUCTION 

Alarm systems play an important role in ensuring safe and 

efficient operation in process industries. Alarm rationalization 

is an element in ISA 18.2 alarm management lifecycle(ANSI, 

2009). Guiding the operator is crucial especially when there is 

a high alarm rate, a situation also known as alarm flooding. 

The primary objective of this paper is to develop a model-

based approach to determine the potential cause of an alarm 

sequence.  

Alarm rationalization is typically done with the help of cause-

effect based techniques such as HAZOPs and HAZIDs to 

determine a list of possible causes and corrective actions for 

each alarm. These methods are not sufficient to capture the 

complex interactions between process variables. Recently, 

data-driven methods that utilize historical alarm logs have 

been proposed(Lucke et al., 2019, Dorgo et al., 2018). 

Although these methods diagnose the possible cause of the 

alarm sequence with reasonable accuracy, lack of 

interpretability associated with these approaches is a limitation 

in its application as an operator guiding tool.    

The idea of representing the sequence of alarms generated as 

the fault propagation path is exploited in this paper to diagnose 

the possible cause of the alarm sequence. The alarm data 

analysis can be broadly classified into time series analysis and 

sequence mining methods(Lucke et al., 2019). Feature based 

approach, sequence distance based approach and model based 

approach are the three common techniques available for 

sequence classification(Xing et al., 2010). Feature based 

approaches transform a sequence into a feature vector and then 

apply conventional classification methods such as k-nearest 

neighbours, neural networks or support vector 

machines(Dorgo et al., 2018). The sequence distance-based 

approaches aim to capture the similarity between sequences to 

determine the class. The model-based approach assumes 

sequences in a class are generated by an underlying 

model(Ahmed et al., 2013, Charbonnier et al., 2016). It models 

the probability distributions of sequences in each class. Naive 

Bayes sequence classifier, Markov Model, Hidden Markov 

Model (HMM) and other statistical models are used for this 

purpose. In this paper, an HMM based approach is proposed 

for alarm sequence classification for the following reasons: (i). 

The alarm sequences generated for faults depend on the 

magnitude of fault and sensor noises. There is a need for 

incorporating stochastic features to account for the 

uncertainties and randomness in processes and (ii). The model-

based approach is relatively easier to interpret unlike other 

purely data driven methods. 

The paper is organized as follows: in section 2 a brief overview 

of HMM and the approach proposed for application in alarm 

rationalization is outlined. The approach is applied to vinyl 

acetate monomer production process and the results are 

discussed in section 3. Lastly, the conclusions and 

recommendations are presented in section 4.   
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2. APPROACH PROPOSED FOR ALARM 

RATIONALIZATION 

2.1 Brief overview of HMM 

HMM is a probabilistic model that assumes the states follow 

the Markov property and are unobservable(Kouemou and 

Dymarski, 2011). The outputs that depend on the state are 

observable. The state transition probabilities and emission 

probabilities are estimated in HMM. HMM is used to predict 

the hidden state sequence given the measured output sequence. 

Their applications include speech recognition, facial 

expression identification and bioinformatics. 

The model parameters include the following: the number of 

distinct states N, the state transition probability matrix A, the 

number of measurement variables at each state M, the 

emission probability matrix B and the probability distribution 

of the initial state ∏. The N states can be denoted by S = {S1, 

S2,…, SN}, the observed measurements from states by V = {v1, 

v2,…, vM}. The hidden state and the measured output at time t 

are represented by xt and yt respectively. The state transition 

probability matrix Aij = {aij}, where aij is the probability that 

the state evolves from state Si to state Sj. 

 aij =  p{xt =  Sj|xt−1 =  Si}, (1 ≤  i, j ≤  N)  (1) 

The emission probability distribution in each state B = {bj(k)} 

is the probability of observing output vk from state Sj. 

bj(k)  =  p{yt  =  vk|xt  =  Sj}, (1 ≤  j ≤  N, 1 ≤  k ≤  M)

      (2) 

The initial state distribution ∏i is the probability that the model 

is at state Si at t = 0. It is given by, 

∏i  =  p{x0 =  Si}, (1 ≤  i ≤  N)   (3) 

2.2 Summary of algorithms for HMM learning and decoding 

of hidden state sequence 

In this section, algorithms available for model learning and 

decoding hidden state sequence is briefly summarized. The 

Baum-Welch algorithm is commonly used for learning the 

HMM parameters. The Viterbi algorithm is used for 

identifying the most likely hidden state sequence given an 

observation sequence.  

The Baum-Welch algorithm is also known as the forward-

backward algorithm. In the initial step, the parameters A, B 

and ∏ are initialized. They are randomly assigned if there is 

no prior knowledge. Given the initial model parameters and 

the observed sequence Y0:T, the following steps are performed. 

In the forward step, α(xk), which is the joint probability 

distribution of states at time k given the observables sequence 

up to time k, is calculated.  In the backward step, 𝛽(xk), which 

is the conditional probability of the observed data from 

time k+1 given the state at time k, is calculated. The forward 

and backward steps are combined to calculate the joint 

probability distribution of a state at time k given Y0:T. The joint 

probability of observing two consecutive states given Y0:T is 

also calculated. Finally, in the update step, the model 

parameters are updated to maximize the probability of 

obtaining the observed sequence. Viterbi algorithm helps 

make an inference based on a trained model and the 

observation sequence. It uses a recursive algorithm to identify 

the hidden state sequence.  

2.3 Approach proposed for alarm rationalization 

A safety review technique needs to be performed to identify 

possible faults (hazardous scenarios). Using the plant historic 

data or mathematical model of the plant, the alarm sequences 

can be extracted for the identified faults. If using a closed loop 

simulator to generate data, a range of fault magnitudes can be 

simulated to capture different possible fault propagation paths. 

Modelling random measurement noises will help capture the 

realistic stochastic aspects of plant operation. Model faults as 

states and the alarms as observable outputs. Split data into 

training and test datasets to learn and validate the model 

respectively. Software such as MATLAB or R can be used for 

training and predicting hidden state sequences. 

3. CASE STUDY 

3.1 Process description and faults characterization 

The proposed approach for alarm rationalization is applied to 

the industrial case study: the Vinyl Acetate Monomer (VAM) 

process that was presented by Luyben and Tyreus (Luyben and 

Tyréus, 1998). A nonlinear public domain model of the VAM 

process based on Luyben’s multi-loop control structure 

(Luyben et al., 1999), developed in C language and 

implemented in MATLAB environment (Chen et al., 2003), is 

used to obtain the alarm sequences data required for training 

and testing the HMM. This process consists of 246 states, 26 

manipulated variables and 43 measurements.  

Measurement noises for the sensors of type liquid level gauge, 

pressure gauge and composition analyzers were introduced in 

the MATLAB model as uniformly distributed random 

numbers of magnitude 0.1 %, 0.25 % and 0.5 % of the steady 

state value respectively. The amplitude of noise for 

temperature gauges were fixed at 2 K based on commercially 

available sensors. For this case study, an alarm is set to trigger 

when the measured variables go beyond 4 standard deviations 

from the mean value measured at normal operating conditions.  

A list of seven faults identified for the VAM process are shown 

in Table 1. Faults are identified based on valve stiction and 

sensor malfunctions (faults 1-7). The high and low alarm limits 

for measurements are distinguished to enhance the 

classification accuracy. For modeling purposes, the high alarm 

limits of the measurements are numbered 1- 43 and the 

corresponding low alarm limits are numbered 44-86. The 

nonlinear dynamic model was used to simulate these scenarios 

for different fault magnitudes. The observed alarm sequences 

for a fault varied in the order in which the alarms were 
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generated as well as the length of sequences. A total of 36 fault 

scenarios were simulated for learning the HMM parameters. In 

addition to this, 21 different fault scenarios were simulated for 

evaluating the performance of HMM.  

Table 1.  Faults list along with their type, number, and 

length of sequences in training dataset 

# Fault description Type No. of 

seqs. 

Length 

of seqs. 

1 Absorber level gauge drift Sensor   7 13-16 

2 Vaporizer level gauge drift Sensor 3 32-34 

3 Column fifth tray temp 

gauge drift 

Sensor 5 16-18 

4 Reactor exit temperature 

gauge drift 

Sensor 6 31-32 

5 Steam drum pressure set 

point increases 

Actuat

or 

3 31-32 

6 Column reboiler duty stuck Actuat

or 

8 11-15 

7 CO2 removal unit- Purge 

flow valve stuck 

Actuat

or 

4 20-25 

3.2 Results and discussions 

The faults are modelled as states and the alarm sequences are 

modelled as the observed output sequence for the HMM. 

HMM parameters were trained using the MATLAB Statistics 

and Machine Learning Toolbox that uses the Baum-Welch 

algorithm. All states are assumed to be equally likely for being 

the initial state. The state transition probability and the 

emission probability matrices are pictorially shown in figure 1 

and figure 2 respectively.   

 

Fig. 1. State transition probabilities 

It is seen from the state transition matrix in figure 1 that the 

probability of staying in state S1 is close to one. This can be 

justified since the faults occur one at a time. The emission 

probability matrix in figure 2 shows the probability of 

measurements generating an alarm given the fault.  

The Viterbi algorithm in the MATLAB toolbox was used to 

predict the hidden state sequence. Given that the simulations 

were generated for one fault at a time, it is reasonable to define 

the state corresponding to the given alarm sequence as the state 

with maximum frequency in the predicted state sequence.  

The HMM performance is evaluated on its efficiency in 

predicting the fault correctly as early as possible. The first p 

elements of the sequences from the test dataset was used to 

identify the most likely state sequence, and subsequently the 

corresponding fault. The prediction accuracies are plotted as a 

function of p first elements of the sequence for p = {1, 2, … 

10} in figure 3. As p increases, the prediction accuracy 

increases up to ~86%.  

The true and estimated state for the 21 test sequences for p = 

10 is shown in figure 4. It is seen that true state and predicted 

state matched for all states except for state 3, where state 3 is 

predicted as state 6. From the fault list in table 1 it is seen that 

faults 3 and 6 are the sensor and actuator faults originating 

from the same control loop. This suggests a problem of 

distinguishability between faults with similar propagation 

paths. To improve the prediction accuracy, the following 

modifications were done to the HMM: 

• Fault 6 and fault 3 together will be modelled as state 

3 

• Fault 4 and fault 5 together will be modelled as state 

4 as they originate from the same control loop 

Grouping the faults originating from the same control loop 

together helps narrow down the faulty region precisely, rather 

than trying to predict the specific fault ambiguously. The 

reduced 5 state model was trained and tested. The prediction 

accuracy results are shown in figure 5. It is seen that the 

prediction accuracy increases to 100% for p > 7.  An accuracy 

of 90% for p = 5 suggests that the proposed approach can be 

used for early prediction of faults with high accuracy.  

 

Fig. 2. HMM prediction accuracy for the test dataset as a 

function of the length of input subsequence  

4. CONCLUSIONS 

The HMM based approach for alarm rationalization is 

proposed to guide the operator for early troubleshooting of the 

abnormal scenario. The model-based approach that is 

proposed in this paper analyses the fault propagation path to 

identify the most probable cause. The probabilistic framework 

provides scope to include the effects of differences in 

propagation paths that arise because of different fault 

magnitudes and random sensor noises.  

Application of the HMM approach on the Vinyl Acetate 

Monomer process showed that the model was successful in 
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early prediction of the fault with reasonable accuracy. A 

distinguishability problem between faults were observed when 

they originated from the same control loop. The model was 

modified to lump faults from one control loop as one fault. The 

reduced model helped improve the prediction accuracy from 

80% to 90% for a sequence length of 5. The HMM approach 

seems promising for application in alarm rationalization. 

Future work will focus on building model-based alarm 

systems, using the concept of dynamic safety sets proposed in 

(Venkidasalapathy and Kravaris, 2020) to characterize process 

safeness. An optimization formulation proposed by the authors 

for alarm identification  in  (Venkidasalapathy et al., 2018) will 

be extended to simultaneously optimize alarm identification 

and rationalization to aid the operator in quick troubleshooting 

without alarm overload.   

 

Fig. 3. Emission probabilities of 43 measurements from each fault

 

Fig. 4. True fault vs predicted fault with length of 

subsequence being 10 

 

Fig. 5. HMM prediction accuracy for the test dataset for the 

reduced model 
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