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Abstract: Generating haptic forces in portable electronic devices and wearables is often
accomplished with small vibrating motors, such as linear resonant actuators (LRAs). While
these motors are favorably small, lightweight, inexpensive, and low-power, they are limited in
the types of forces they can generate. Command-shaping techniques are presented that can
either accentuate or attenuate haptic forces generated by LRAs. The proposed methods are
advantageous because they generate force profiles that cannot be produced by standard haptic
libraries. The methods are experimentally verified using a laser vibrometer.

Keywords: Haptics, Vibration, Command Shaping, Linear Resonant Actuator.

1. INTRODUCTION

Billions of smart phones, game controllers, touchscreens,
keyboards, smart watches, and other devices contain small
vibrating motors. These motors are used to provide haptic
signals to users. Two classes of haptic motors are eccen-
tric rotating mass (ERM) actuators and linear resonant
actuators (LRAs). In both types of motors, haptic signals
are generated when the motors vibrate and convey infor-
mation to the user. While these motors offer many size,
weight, cost, and efficiency advantages, their fundamental
vibratory nature limits the types of forces they produce.
This paper presents control methods that expand the
haptic signal repertoire by both reducing and accentuating
the natural vibratory response of haptic motors.

ERMs, like the ones shown in Figure 1, are comprised of
a DC motor with an unbalanced mass attached to the
motor shaft. When voltage is applied to the motor, the
unbalanced mass rotates. This motion generates a radial
force that rotates at the same frequency as the motor shaft.
The oscillating force is perceived by users as “vibration.”

The motor vibration from the ERM is what conveys the
haptic signal to the user. The amplitude of the force
is proportional to the square of the angular velocity of
the shaft. Because the mass of the rotating imbalance is
typically small, ERMs need to operate at a high angular

1 This research was done while the author was working for Penning-
ton Advisors on assignment at Google LLC.

velocity before haptic forces can be felt by the user. Many
ERM-type motors are designed to operate at speeds that
generate vibration in the 150-250 Hz range.

Motors that exhibit a rotating imbalance are more suscep-
tible to certain types of failures than well-balanced motors.
For instance, unbalanced motors must resist radial forces
that would not be present on balanced motors. These
forces are transmitted through shaft bearings or bushings,
and can cause these elements to wear or fail prematurely.

LRAs, like the one shown in Figure 2, are structurally
different from ERM actuators. They are essentially mass-
spring systems that are contained within a housing. The
motion of the mass is excited by forces generated by an
electromagnet placed near the moving mass. The spring
acts to return the displaced mass to its equilibrium posi-
tion.

Fig. 1. ERM Motor [Precision Microdrives Ltd (2020a)]
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Fig. 2. LRA Motor [Precision Microdrives Ltd (2020b)]

LRAs are becoming more popular for haptic applications
because they have several advantages over ERMs. Notably,
they do not require unbalanced forces to be exerted on
shaft bearings or bushings. Additionally, they also have
more favorable haptic characteristics than ERMs because
they can generate detectable forces over a larger range
of frequencies, including lower frequencies. This dynamic
characteristic exists because, unlike ERMs, where the mag-
nitude of the forces are closely coupled with the driving
frequency, the forces generated by LRAs are somewhat in-
dependent of the driving frequency. Furthermore, if LRAs
are driven at the resonant frequency of the mass-spring
system, then they can generate forces in a very efficient
manner, which is especially important in applications with
limited battery life.

The objectives of this paper are to explore the dynam-
ics and improve the control of haptic motors in general,
and LRAs in particular. To this end, the next section
presents models that capture the primary dynamic aspects
of LRAs. Section 3 then presents command-shaping meth-
ods that can be configured to either attenuate or accentu-
ate the vibratory forces. Section 4 presents experimental
measurements with a laser vibrometer that verify both the
vibration reduction and the vibration accentuation of the
command-shaping methods. Section 5 contains concluding
remarks and summarizes key results.

2. LRA MODELING

The LRA schematic shown previously in Figure 2 can be
modeled in the manner shown in Figure 3. This figure
depicts an LRA housing of mass, m1, and smaller, driven
mass, m2, typically made from a ferrous material. The
driven mass is constrained to move within the housing
along a horizontal axis. A spring couples the driven mass
to the housing with spring constant k. Damping forces
are represented by damping constant b. Driving forces
imparted by an electromagnet are represented by Fd acting
on the driven mass and housing in opposite directions. The
displacements of the housing and driven mass from their
at-rest positions are represented by x1 and x2, respectively.

m2k1 k2

Actuating Forces
m1

m1 m2

x1 x2

b

k
Fd Fd

Fig. 3. Model of Linear Resonant Actuator.

2.1 Linear Dynamic Model

If both the spring and damper are linear in nature, then
the reaction forces generated by these elements can be
represented mathematically as:

Spring Force = k(x1 − x2) (1)

Damping Force = b(ẋ1 − ẋ2) (2)

State-Space Representation

The linear differential equations of motion for the LRA
can be written in state-space form:

q̇ =


0 1 0 0
−k
m1

−b
m1

k
m1

b
m1

0 0 0 1
k
m2

b
m2

−k
m2

−b
m2

q +


0
−1
m1

0
1
m2

Fd (3)

The state vector, q is defined as:

q = [x1 ẋ1 x2 ẋ2]T (4)

Transfer Function Representation

An alternative to the state-space equations of motion
shown in (3) is to represent the relationship between the
driving force and the displacement of the housing in the
Laplace domain. Assuming zero initial conditions yields:

X1 (s)

Fd (s)
=

−1/m1

s2 + s2ζωn + ω2
n

(5)

where

ω2
n = k/meq (6)

2ζωn = b/meq (7)

meq = (m1m2)/(m1 +m2) (8)

The linear behavior governed by the preceding equations of
motion largely capture the actual behavior of some LRAs.
This will be shown in a subsequent section. However, it
will also be shown that some LRAs exhibit non-linear
dynamics that are not captured well by a linear model.
For these scenarios, a more general model is needed.

2.2 Nonlinear Dynamic Model

The unforced oscillation frequency of an LRA that exhibits
predominantly linear dynamics will tend to remain con-
stant, irrespective of spring elongation. Not all LRAs, how-
ever, exhibit this constancy. It has been observed in some
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Fig. 4. Measured Oscillation Frequencies at Different
Spring Elongation Positions.

LRAs that unforced oscillation frequency can increase with
spring elongation. Experimental data for one such LRA is
shown in Figure 4.

The behavior exhibited in this nonlinear LRA can be
modeled by generalizing Hooke’s law:

Spring Force = k(x1 − x2) (9)

where the spring coefficient is obtained from a function κ:

k = κ(elongation) (10)

Since oscillation frequency increases with spring stiffness,
a κ function that models the behavior exhibited in Figure 4
should increase the spring constant with spring elongation.
One such function is:

k = ko(1 + ρ|d|λ) (11)

where d is the spring elongation, defined as:

d ≡ x1 − x2 (12)

The symbols, ko, ρ, and λ are adjustable parameters that
can be used to tune the behavior of the model. More
specifically, ko is the minimum spring stiffness output from
the function in the absence of any spring deflection. ρ and λ
are positive scalars that increase the spring stiffness when
d > 0.

In light of (11), it may be shown that the dynamics of the
nonlinear LRA model may be expressed as:

d̈+ 2ζω̃nḋ+ ω̃2
nd =

−Fd(t)
meq

+
ko
meq

ρλd̄(λ+1) (13)

where

ω̃2
n ≡

ko
meq

(
1 + ρ(λ+ 1)d̄λ

)
(14)

2ζω̃n ≡
(

β

meq

)
(15)

The symbol d̄ represents the steady-state elongation cor-
responding with a steady state force, F̄d.

Equation (14) is significant. It reveals the relationship
between the natural frequency, ω̃n, of the system when
it oscillates about the equilibrium point d̄. This frequency

changes with d̄, and can be precisely adjusted using the
parameters ko, λ, and ρ.

3. COMMAND-SHAPING METHODS

Given that LRAs are mass-spring systems that naturally
vibrate in response to an input, they can exhibit unwanted
vibration, or “buzzing,” that is uncomfortable or annoy-
ing. Therefore, it would be useful in certain applications to
drive the motors without generating high levels of “buzz.”
One way to decrease residual vibration is to use input
shaping, which is a command-filtering method that lim-
its unwanted vibration [Smith (1958); Singer and Seering
(1990); Singhose (2009); Singh and Vadali (1994); Singh
(2009); Vyhlidal and Hromik (2015)]. Input shaping has
been used on a great variety of systems ranging from large
cranes [Sorensen et al. (2007)] down to very small systems
[Fortgang et al. (2004)].

Figure 5 shows the fundamental input-shaping concept. In
the top of Figure 5, a first impulse is applied to a flexible
linear system, and induces a lightly-damped response. A
similar response (shown by the dashed line) would result
if a second impulse were applied a short time later. The
bottom of Figure 5 shows the response that results from
both impulses. If the system is linear and time-invariant,
then the two responses combine linearly and the vibration
is eliminated.

In order to implement input shaping on real systems,
a vibration-reducing impulse sequence, like that shown
in Figure 5, is convolved with a baseline command to
create a shaped command that preserves the vibration-
reducing properties of the impulse sequence. An example
of a shaped step input is shown in Figure 6. In the top plot,
the Step 1 command is applied to a flexible linear system,
and the system vibrates in response. A similar result would
occur should the Step 2 command be issued a short time
later. The bottom of Figure 6 shows the response that
would result if the command was the sum of Steps 1 and
2.

Input-shaped step sequences may consist of more than
two steps. The amplitudes and times of the steps may be
written in matrix form as:

Response to First Impulse
Response to Second Impulse

Time
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Fig. 5. Response of a Linear System to a Sequence of
Impulses.
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Fig. 6. Creating an Input-Shaped Step Sequence by Com-
bining Two Step Commands.[

Ai
ti

]
=

[
A1 . . . Ai . . . AN
t1 . . . ti . . . tN

]
(16)

where Ai are the step amplitudes, ti are the time locations
of each step, and N is the number of impulses.

The step amplitudes and time locations are designed us-
ing estimated natural frequencies and damping ratios of
the flexible modes to be suppressed. Input shapers can
be made robust to errors and changes in these param-
eters [Singer and Seering (1990); Singhose et al. (1994,
1996)].

3.1 Design Constraints and Performance Requirements

Input shapers may be designed using different combina-
tions of performance requirements. For example, one set
of constraints consists of requiring zero residual vibration
at the time of the last step and restricting the steps to be
positive. The residual vibration resulting from a sequence
of impulses applied to an underdamped system can be
calculated using [Singer and Seering (1990)]:

V (ωn, ζ) = e−ζωntn

√
[C (ωn, ζ)]

2
+ [S (ωn, ζ)]

2
(17)

where

C (ωn, ζ, ) =

n∑
i=1

Aie
ζωnticos (ωdti) (18)

and

S (ωn, ζ, ) =

n∑
i=1

Aie
ζωntisin (ωdti) (19)

The symbols ωn and ζ are the natural frequency and
damping ratio of the flexible mode. Ai and ti are the
amplitudes and time locations of the impulses, n is the

number of impulses in the impulse sequence, tn is the
time location of the final impulse, and the damped natural
frequency is:

ωd = ωn
√

1− ζ2 (20)

When V is set to zero, (17) results in a zero residual
vibration constraint.

Due to the transcendental nature of (17), there are mul-
tiple solutions that yield zero residual vibration. To make
the solution time optimal subject to the zero residual
vibration and amplitude constraints, the input shaper
duration must be as short as possible. The time optimality
constraint is:

min(tn). (21)

For an undamped flexible mode, a Zero Vibration (ZV)
[Smith (1958)] input-shaped step sequence has amplitudes
and times: [

Ai
ti

]
=

[
0.5 0.5
0 Tn

2

]
(22)

where Tn is the vibration or oscillation period. This is the
sequence of steps used in Figure 6 to create a command
that results in zero residual vibration for a flexible system
with a period of Tn = 1.

The above shaper is designed using the requirement that
the impulse amplitudes be positive. If that requirement
is relaxed to allows negative amplitudes, then the shaper
can act more quickly to suppress residual vibration. If the
amplitudes are allowed to range between positive 1 and
negative 1, then such a Unity-Magnitude Zero-Vibration
(UMZV) shaper for undamped systems can be described
as: [

Ai
ti

]
=

 1 −1 1

0 cos−1(0.5)
ω

cos−1(−0.5)
ω

 (23)

Formulas that give the UMZV shaper for damped systems
are available in the literature [Singhose (2009)].

4. EXPERIMENTAL TESTING OF SHAPING
METHODS

4.1 Measurement System

Measurements of LRA motion were conducted with a
Laser Doppler Vibrometer. A vibrometer measures the
frequency difference between an internal reference beam
and a second beam directed at the surface of the test
substrate. Reflective tape was mounted on the surface of
coin-shaped LRAs. The motors themselves were mounted
on a sheet of neoprene foam with a pressure sensitive
adhesive to allow for motion in both the up and down
directions. A schematic diagram of the experimental setup
is shown in Figure 7(a).

The Polytec Laser Vibrometer used for the tests reported
here can measure velocity and displacement of the test
surface at a frequency of 250 kHz. Figure 7(b) shows a
photograph of the the experimental setup with the laser
vibrometer measuring an actuator mounted on neoprene
foam. Figure 7(c) shows a close-up view of the motor and
a diagram explaining the layers.
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(a) Schematic Diagram.

(b) Photograph of Experimental Setup.

(c) Close-up Photograph of Motor Mount and Layer Diagram.

Fig. 7. Laser Vibrometer Setup and Photos.

Experiments were conducted on a variety of LRAs. The
largest LRA used was the G1040003D LRA (Jinlong
Machinery & Electronics, Inc.) This LRA is a coin-shaped
actuator with a diameter of 10mm and a height of 4.05 mm.
The actuator is rated for a maximum voltage of 2.5 Vrms
and is rated to vibrate at a resonant frequency of 170 ±
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Fig. 8. Step Responses to Three Incremental Increases in
Voltage.

5 Hz. The LRA is rated to produce a minimum acceleration
of 1.8 Grms at its resonant frequency. 2 The LRA was
controlled using an Arduino Uno board with an attached
motor driver shield (Pololu DRV8835 Dual Motor Driver
Shield for Arduino.) The smallest LRA used was the
G0832022D (Jinlong Machinery & Electronics, Inc.) This
smaller LRA is a coin-shaped actuator with a diameter of
8 mm and a height of 3.2 mm. The actuator is rated for a
maximum voltage of 2.0 Vrms and is rated to vibrate at a
resonant frequency of 235 Hz.

4.2 Step and Sine Wave Responses

The open-loop step response of the large LRA was mea-
sured by applying three input steps: 0 to 1, 1 to 2, and 2 to
3 volts. The measurements of the motor responses to these
three steps are shown in Figure 8. The responses show
that the amplitude of each 1 volt step decreases slightly as
the voltage is increased. Additionally, though not readily
visible in the plot of Figure 8, the frequency of the response
increases slightly with voltage. The average frequency and
damping ratio from these responses was used to select the
modeling parameters for this motor.

The open-loop response of the small LRA was measured by
applying sine waves of various durations. More specifically,
four sinusoidal voltage intervals were issued, each with
a frequency of 210 Hz. The four interval durations were
1 cycle, 1.25 cycles, 1.5 cycles, and 1.75 cycles. The
measurements of the motor responses to these four inputs
are compared to the simulated responses in Figure 9. The
responses show that the amplitude of response increases as
the duration of the sine wave input increases. The results
also show that the model is able to accurately predict the
response of the actual motor.

4.3 Measurements of Internal Mass Motion

The preceding tests measured the surface of the LRA
housing. In order to better understand the dynamics of
the internal LRA structure, the top section of the motor
casing was removed. The remaining structure consisted of
the base plate with the coil, the spring, and the vibrating
mass. Step voltage commands were issued to the coil while

2 www.vibration-motor.com/wp-content/uploads/2019/05/

G1040003D.pdf.
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Fig. 10. Measured Step Responses of Internal Mass.

the laser vibrometer was used to record the motion of the
mass.

The responses to both full negative and full positive volt-
age steps are shown in Figure 10. A negative displacement
response indicates that the mass is stretching the spring
and moving away from the coil. A positive displacement
response indicates that the mass is compressing the spring
and moving closer to the coil.

The responses reveal a nonlinear effect, wherein voltages
that pull the mass closer to the coil create a larger
displacement than voltages that push the mass away
from the coil. For the same voltage, the motor mass
moves approximately 50% further when pulled toward
the coil. Such nonlinear effects are to be expected given
the nonlinear magnetic field generated by the energized
coil. However, some portion of the nonlinear effect can
be attributed to nonlinear spring effects. In any case, the
results indicate that linear input-shaping methods will not
work perfectly, but they may still work well. The next
section examines the application of linear input-shaping
methods to LRAs.

4.4 Vibration-Reducing Commands

Both the step commands and the sine commands described
above induced significant residual vibration of the LRA
motors. Such responses are useful when the desired effect
of the user is a “buzz.” However, in order to achieve a

-12

-9

-6

-3

0

3

6

9

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
es

po
ns

e 
(µ

m
)

Time (sec)
a) Simulated Response to Unshaped Steps.
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Fig. 11. Simulated ZV-Shaped Step Responses of the
G0832022D.

clear and crisp haptic force, it is useful to drive the motors
without large amounts of residual vibration. Such driv-
ing commands can be designed using the input-shaping
methods described above. Figure 11a) shows the simulated
response of the small LRA motor to a series of three pulses
- negative, positive, negative. Note that such a sequence
of three pulses is composed of 4 step inputs: 0 to -1, -1
to 1, 1 to -1, and -1 back to 0. Figure 11b) shows the
simulated response when a ZV input shaper is used to
modify the sequence of four steps. The ZV input shaper
virtually eliminates the “buzzing” from the simulated LRA
motor.

The preceding sequence of unshaped and ZV-shaped steps
were implemented on the actual LRA. Again the vibrom-
eter was used to measure the response to the commands.
The ZV commands were designed for the small LRA
using experimentally-determined vibration parameters of
224.6 Hz and a damping ratio of 0.042. Figure 12(a) shows
the response to the unshaped steps and Figure 12(b)
shows the response to the ZV-shaped steps. The figure
demonstrate that significant attenuation of the “buzzing”
- approximately 50% - was achieved using the ZV-shaped
commands.

The preceding demonstrated that the “buzz” exhibited by
an LRA can be reduced with input shaping. However,
as demonstrated in Figure 12b), reducing the buzz was
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Fig. 12. Experimentally-Measured ZV-Shaped Step Re-
sponses of the G0832022D.

achieved at the expense of reducing the peak acceleration
exhibited by the LRA. Consequently, a user would also
experience a reduction in the felt haptic force. Stated
differently, the shaped response provides a weaker haptic
signal.

In order to achieve a larger haptic signal, while still
achieving a reduction in buzzing, a UMZV shaper was
implemented. This type of shaper uses the same maximum
acceleration as the unshaped step inputs, therefore, it pro-
vides a large haptic signal. Figure 13 shows the response to
the UMZV shaper. This shaper is somewhat more sensitive
to modeling errors and the nonlinear behavior of the LRA,
so it produces somewhat more residual buzz than was
caused by the ZV shaper. However, the UMZV provides
a very useful haptic effect because it provides a strong
response, with significantly less buzz than the unshaped
step input.

4.5 Vibration-Accentuating Commands

Usually, command-shaping methods are used to attenuate
vibration. However, input shaping can also be used to am-
plify vibration. Such an approach has been used previously
to accentuate the swing of a wrecking ball [Maleki et al.
(2014)]. For haptic force generation, this approach allows a
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Fig. 13. Experimentally-Measured UMZV-Shaped Step
Responses of the G0832022D.
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Fig. 14. Vibration-Accentuated Step Responses of the
G0832022D.

given linear resonant actuator to produce a stronger haptic
effect for the same maximum rated voltage.

The vibration-accentuating shaper implemented for this
study was a UMZV shaper that was intentionally designed
to amplify, instead of attenuate, vibration. Instead of using
the actual natural frequency of the LRA when designing
the shaper, a value of 1/3 of the natural frequency was
used. This has the effect of causing each impulse in the
shaper to reinforce the vibration caused by the previous
impulse in the sequence. Figure 14 shows the experimental
response of the small LRA to this vibration-accentuating
shaped command signal. Note that the range of the vertical
response axis has been increased from 12 to 20 to show
the full extent of the motion. This shaped signal was very
effective at exciting the motor and produced a very large
haptic effect.

5. CONCLUSIONS

The range and diversity of appreciable forces generated
by small haptic motors can be greatly extended by shap-
ing the command signals used to drive the motors. A
dynamic model of LRA motors was developed and used
to predict the behavior in response to various types of
command signals. Command-shaping methods were used
to drive the motors such that the inherent “buzzing” of
the LRA was significantly reduced, while preserving the
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amplitude of the haptic force felt by the user. Additionally,
the command-shaping method was altered to achieve the
opposite extreme of accentuating the LRA vibration such
that the haptic forces are very large. Experimental testing
with a laser vibrometer confirmed both the reduction and
accentuation of the LRA vibration.
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