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Abstract: In this paper, we propose an extremum seeking scheme for single-parameter static
maps in the presence of distributed input delay. A probing signal is newly developed so that
the delayed signal has a conventional form in standard extremum seeking problems. An update
law for an estimate of the unknown argument of the extremum is designed based on the idea of
the predictor feedback law. We prove the convergence of the estimation error to a neighborhood
of the origin by means of the method of averaging. The effectiveness of the proposed scheme is
confirmed by a numerical simulation.
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1. INTRODUCTION

Extremum seeking is known as a real-time and model-
free optimization tool for tuning parameters in dynamic
nonlinear systems as well as nonlinear static maps. In a
usual setting, a model of the system or map is unavailable,
but we can measure the value of the performance output
to be optimized. To obtain information used to search the
optimal parameter, we change the value of the parameter
in accordance with a sinusoidal perturbation signal. Based
on the corresponding output to this oscillatory parameter,
an estimate of the optimal parameter is updated. In this
way, we seek the optimal parameter.

Development of extremum seeking has a long history (see,
for example, (Tan et al., 2010)). Let us focus on the
theoretical side. A rigorous stability analysis is conduced
by Krstić and Wang (2000); Ariyur and Krstić (2003).
The semi-global stability is investigated in (Tan et al.,
2006, 2009). Extremum seeking schemes corresponding to
Newton’s method are proposed in (Moase et al., 2010;
Nešić et al., 2010; Ghaffari et al., 2012). In addition, ex-
tremum seeking schemes using a stochastic signal instead
of a sinusoidal signal is developed by Manzie and Krstic
(2009); Liu and Krstic (2010, 2014). Approaches exploiting
the Lie bracket motion induced by sinusoidal signals are
also reported in (Dürr et al., 2013; Labar et al., 2019).

In those studies, the perturbation signal is assumed to be
transmitted to the system immediately. However, sensor
and actuator delays or transmission delays are unavoidable
in practical situations. Then, the delay might destabilize
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the extremum seeking loop. Recently, the authors pro-
posed an extremum seeking scheme for static maps that
can compensate a class of delays (Oliveira et al., 2017).
The proposed scheme is constructed based on the idea
of predictor feedback control laws (Manitius and Olbrot,
1979; Artstein, 1982; Krstic, 2009). Since the map to be
optimized is unknown, a complete predictor can not be
implemented. Hence, we introduce a signal corresponding
to a predictor in the average sense.

The class of delays considered in our previous work is
the point delay. In this paper, we deal with distributed
delays to handle more general situations. As the first step
of this study, only a single parameter case is considered.
For the extension of the results in (Oliveira et al., 2017) to
the distributed delay case, the idea of exploiting predictor
feedback also works since the original predictor feedback
laws proposed in (Manitius and Olbrot, 1979; Artstein,
1982) can handle the distributed delays. We have to pay
attention to the design of the perturbation and probing
signals. Modification of their definition is necessary so that
the delayed signals at the input of the nonlinear static map
to be optimized have conventional forms.

We analyze the stability of closed-loop system with the aid
of the method of averaging. In this approach, the stability
of the associated average system must be shown. This
will be proved by constructing a Lyapunov functional.
The Lyapunov stability of predictor feedback laws for
linear systems with distributed input delays was studied
in (Bekiaris-Liberis and Krstic, 2011). A Lyapunov func-
tional is constructed by using the backstepping transfor-
mation. Although it is possible to follow this approach, we
do not employ it. Since our system has a simple structure,
we can construct a Lyapunov functional without back-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5497



stepping transformation. The effectiveness of the proposed
scheme is also examined by a numerical simulation.

Notation: For an open interval I ⊂ R, the space of (equiv-
alent classes of) Lebesgue square-integrable functions on
I is denoted by L2(I). The first order Sobolev space as
a subset of L2(I) is denoted by H1(I). Let f : [0,∞) ×
[0,∞) → [0,∞) be a nonnegative-valued function. Then,
we write f(t, ε) = O(ε) when there exists k > 0 and ε̄ > 0
such that f(t, ε) ≤ kε for any t ∈ [0,∞), ε ∈ [0, ε̄]. Given
an interval I ⊂ R, a normed vector space X , and a natural
number k ∈ N, C(I,X ) and Ck(I,X ) denote the spaces of
continuous functions from I to X and k-times continuously
differentiable functions from I to X , respectively.

2. PROBLEM SETTING

2.1 Review of a conventional single parameter extremum
seeking problem

Consider a static map f : R → R. Suppose that f is
twice continuously differentiable and that the first and
second derivatives of f satisfy f ′(θ∗) = 0 and f ′′(θ∗) =
H 6= 0 at some point θ∗ ∈ R. Then, the map f takes an
extremum f∗ := f(θ∗) at θ∗. Without loss of generality,
we can assume that the Hessian H satisfies H < 0. Then,
f∗ is a local maximum. If f is three-times continuously
differentiable, the quadratic map

Q(θ) = f∗ +
1

2
H (θ − θ∗)2 . (1)

is a local approximation of f around θ = θ∗.

We assume that f∗, H, and θ∗ are unknown. The objective
of the extremum seeking is to find f∗ without knowledge
of H and θ∗ by measuring the signal y(t) = f(θ(t)) for an
appropriately designed probing signal θ(t).

A conventional gradient-based extremum seeking scheme
is given by

˙̂
θ(t) = k

2

a
sin(ωt)y(t) = k

2

a
sin(ωt)f(θ(t)), (2)

θ(t) = θ̂(t) + a sin(ωt), (3)

where k > 0, a > 0, and ω > 0 are design parameters. The

variable θ̂ is an estimate of θ∗. Set the error variable θ̃ as
θ̃(t) := θ̂(t)− θ∗. The closed-loop system can be expressed

in terms of the error variable θ̃ as
˙̃
θ = k

2

a
sin(ωt) f

(
θ̃ + a sin(ωt) + θ∗

)
. (4)

The stability analysis of this closed-loop system is nor-
mally conducted with the help of the averaging analysis.
Assume that f is approximated by (1). Namely, f in (4)
is replaced with Q. Then, the average system of (4) with
f = Q is calculated as

˙̃
θa = kHθ̃a. (5)

Since H < 0, this system clearly has a unique exponen-
tially stable equilibrium θ̃a = 0. The averaging theorem
(Khalil, 2002) guarantees some sort of convergence prop-

erty of the original error variable θ̃.

2.2 Extremum seeking under a distributed input delay

In this paper, we assume that there is a certain kind of
delay in the transmission process from the input signal

θ(t) to the measurement output y(t). More precisely, the
measurement output y is given by

y(t) = f

(∫ D

0

θ(t− σ)dβ(σ)

)
(6)

for some constant D > 0. The integral on the right-hand
side of (6) is the Riemann-Stieltjes integral with respect
to a function β : [0, D] → R of bounded variation. Recall
that a function of bounded variation can be discontinuous.
If β is such that

β(x) =

{
0, 0 ≤ x < D0,

1, D0 ≤ x ≤ D,
(7)

for some D0 ∈ (0, D), then, we have y(t) = f(θ(t −D0)).
The extremum seeking scheme developed in our previous
paper (Oliveira et al., 2017) can handle this case. However,
for the case with general β, a new scheme is necessary.

We make an assumption on the class of the function β. For
each ω > 0, define γ(ω) by

γ(ω) =

(∫ D

0

cos(ωσ)dβ(σ)

)2

+

(∫ D

0

sin(ωσ)dβ(σ)

)2

. (8)

Clearly, γ(ω) ≥ 0 for all ω > 0.

Assumption 1. The function β : [0, D] → R of bounded
variation satisfies β(0) = 0 and β(1) = 1, and there exists a
non-decreasing sequence {ωi}∞i=1 ⊂ (0,∞) ⊂ R of positive
real numbers such that ωi → ∞ as i → ∞ and that γ
defined by (8) satisfies γ(ωi) 6= 0 for any i ∈ N.

The condition on the value of β at σ = 0 does not cause
any loss of generality since we only consider the Stieltjes
integrals with respect to β. The condition at x = 1 ensures
that the transmission is lossless when a constant signal is
applied to the map. The last condition is necessary to let
the frequency ω be arbitrarily large. Note that, for β given
in (7), we have β(0) = 0, β(1) = 1, and γ(ω) = 1 for any
ω ∈ (0,∞). Hence, Assumption 1 is fulfilled in this case.

The objective of this paper is to develop an extremum
seeking scheme for a static map f that is locally ap-
proximated by the quadratic map (1) in the presence of
distributed input delay represented by (6). While the map
f is unknown, our approach requires complete information
about the delay. Namely, D and β are assumed to be
known. This is a rather strong assumption. Nevertheless,
construction of the proposed extremum seeking scheme
will follow a model-free approach.

3. EXTREMUM SEEKING SCHEME

In this section, we propose an extremum seeking scheme
as a solution to our problem.

3.1 Proposed scheme

Let θ̂(t) ∈ R be an estimate of θ∗ and θ̄(t) ∈ R be an
auxiliary variable. We temporary write an update law for
the auxiliary variable θ̄ as

˙̄θ = U. (9)

The signal U(t) ∈ R is to be determined. We define θ̂ by

θ̂(t) =

∫ D

0

θ̄(t− σ)dβ(σ). (10)
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The use of these two variables θ̂ and θ̄ is a feature of the
proposed extremum seeking scheme.

In the proposed scheme, we will use three perturbation
signals S(t),M(t), N(t) ∈ R defined by

S(t) =
a

γ(ω)

∫ D

0

sin
(
ω(t+ ξ)

)
dβ(ξ), (11)

M(t) = (2/a) sin(ωt), (12)

N(t) = (8/a2)
(
2 sin2(ωt)− 1

)
. (13)

The additive perturbation signal S(t) has a complicated
form, whereas M(t) and N(t) are relatively simple. The
signal M(t) is used in a conventional extremum seeking.
The third signal N(t) is introduced in (Ghaffari et al.,
2012) to estimate the unknown Hessian H. The signal
N(t) will be used for the same purpose. It should be noted
that, as reviewed in the previous section, the Hessian H
is not necessary in the standard gradient-based extremum
seeking in the delay-free case. As we will see later, our
approach to delay compensation involves prediction of

future values of the estimation error between θ̂ and θ∗.
For the prediction, an estimate of H will be necessary.

We set the probing signal θ(t) as

θ(t) = θ̄(t) + S(t). (14)

The signal θ includes θ̄, but does not include θ̂ unlike
conventional extremum seeking schemes. We claim that
substituting (14) into (6) leads to

y(t) = f
(
θ̂(t) + a sin(ωt)

)
. (15)

Indeed, integrating (14) with respect to β yields∫ D

0

θ(t− σ)dβ(σ)

= θ̂(t) +
a

γ(ω)

∫ D

0

∫ D

0

sin
(
ω(t− σ + ξ)

)
dβ(σ)dβ(ξ)

= θ̂(t) +
a sin(ωt)

γ(ω)

∫ D

0

∫ D

0

cos
(
ω(ξ − σ)

)
dβ(σ)dβ(ξ)

+
a cos(ωt)

γ(ω)

∫ D

0

∫ D

0

sin
(
ω(ξ − σ)

)
dβ(σ)dβ(ξ), (16)

where we have used the definition (10) of θ̂ and the
addition formula of trigonometric functions. The addition
formula also gives∫ D

0

∫ D

0

cos
(
ω(ξ − σ)

)
dβ(σ)dβ(ξ) = γ(ω), (17)∫ D

0

∫ D

0

sin
(
ω(ξ − σ)

)
dβ(σ)dβ(ξ) = 0. (18)

Substituting (17) and (18) into (16), we arrive at∫ D

0

θ(t− σ)dβ(σ) = θ̂(t) + a sin(ωt). (19)

This immediately implies (15). Although the estimate θ̂
of θ∗ and the signal θ are defined in a non-conventional
manner, the output y is expressed as if the map f received

the signal θ̂ + a sin(ωt) as in the traditional extremum
seeking scheme.

We next derive the equation that the error variable θ̃(t) :=

θ̂(t)− θ∗ satisfies. Notice that
˙̃
θ =

˙̂
θ. Then, differentiating

(10) with respect to t leads to

Delay

Predictor

Fig. 1. Block diagram of the proposed extremum seeking
scheme for systems with distributed input delays.

˙̃
θ(t) =

∫ D

0

U(t− σ)dβ(σ). (20)

The error variable θ̃ evolves in accordance with the equa-
tion (20). If U is regarded as the control input, the equa-
tion (20) is in a typical form of a driftless linear system
with distributed input delay. It is well-known that such a
system can be stabilized by a predictor feedback control
law. In (Manitius and Olbrot, 1979; Artstein, 1982), the
following control law is proposed:

U(t) = −k

(
θ̃(t) +

∫ t+D

t

∫ D

τ−t
U(τ − σ)dβ(σ)dτ

)
, (21)

where k > 0. The terms in the parentheses correspond to
a predicted future value of θ̃. Unfortunately, this control
law is not implementable because θ̃ is unavailable. Our
approach aims at realizing (21) in the average sense.

To this end, we propose to close the loop of our extremum
seeking scheme by setting the signal U in the update law
(9) for θ̄ as the solution to the following time-varying
ordinary differential equation:

U̇(t) = −cU(t) + ckP (t), (22)

where β[D,σ] := β(D)−β(σ), c > 0, and P (t) is defined by

P (t) = M(t)y(t) +N(t)y(t)

∫ D

0

β[D,σ]U(t− σ)dσ. (23)

The corresponding block diagram is given in Fig. 1. The
equation (22) means that U(t) is a filtered version of
the signal kP (t). The filter is represented by the transfer
function c/(s+ c). As we will see later, kP mimics (21) in
the average sense. Introducing the filter turns U into a part
of the state variable. Then, we can apply the averaging
theorem to the closed-loop system.

3.2 Abstract formulation of the closed-loop system

Recall that the measurement signal y is given by (15). This

can be rewritten in terms of the error variable θ̃ as

y(t) = f
(
θ̃(t) + a sin(ωt) + θ∗

)
. (24)

Hence, the closed-loop system consists of (20) and (22)

with the initial condition θ̃(0) = θ̃0 ∈ R and U(τ −
D) = φ(τ) for each τ ∈ [0, D]. The initial function φ is an
element of some function space. To conduct stability anal-
ysis, we introduce a partial differential equation (PDE)
representation.
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Set u(x, t) = U(x + t − D) for each x ∈ (0, D] and t ≥ 0
with x+ t ≥ 0. Then, the closed-loop system (20) and (22)
can be expressed as

˙̃
θ(t) =

∫ D

0

u(D − σ, t)dβ(σ), (25)

ut(x, t) = ux(x, t), x ∈ (0, D), (26)

u(D, t) = U(t), (27)

U̇(t) = −cU(t) + ckP (t) (28)

with the initial condition θ̃(0) = θ̃0, u(x, 0) = u0(x) =
φ(x), x ∈ (0, D) and U(0) = U0 = φ(D). The signal P is
given in (23). In this representation, the state variable is

composed of the finite dimensional components θ̃, U and
the infinite dimensional one u.

Let the state space be H := R × L2(0, D) × R equipped
with the inner product(

[X1, X2, X3]>, [Y1, Y2, Y3]>
)
H

:= X1Y1 +

∫ D

0

X2(ξ)Y2(ξ)dξ +X3Y3 (29)

for each [X1, X2, X3]>, [Y1, Y2, Y3]> ∈ H. The space H is a
Hilbert space. The norm induced by the inner product (29)
is denoted by ‖ · ‖H. Define a linear operator A : D(A) ⊂
H → H by

A

[
X1

X2

X3

]
=

[ ∫ D

0

X2(D − σ)dβ(σ)
dX2

dx
−cX3

]>
(30)

with the domain

D(A) =
{

[X1, X2, X3] ∈ H∣∣X2 ∈ H1(0, D), X2(D) = X3

}
. (31)

The time-varying nonlinear perturbation term is given by

F (ωt,X) = [ 0 0 F3(ωt,X) ]
>
, (32)

where F3 : R×H → R is defined by

F3(ωt,X) = ck

(
2

a
sin(ωt) f

(
X1 + a sin(ωt) + θ∗

)
+

16

a2

(
sin2(ωt)− 1

2

)
f
(
X1 + a sin(ωt) + θ∗

)
×
∫ D

0

β[D,σ]X2(D − σ)dσ

)
. (33)

Thus, we arrive at the following abstract evolution equa-
tion corresponding to the closed-loop system (25)–(28):

dX

dt
= AX + F (ωt,X), (34)

where X(t) = [θ̃(t), u(·, t), U(t)]>.

Clearly, F (ωt + 2π,X) = F (ωt,X) for any X ∈ H. If
1/ω is considered as a small parameter ε, we can apply
the method of averaging for infinite dimensional systems
developed in (Hale and Verduyn Lunel, 1990). Then, the
stability of the closed-loop system can be investigated
through the corresponding average system.

4. STABILITY ANALYSIS

The main goal of this section is to prove our main theorem.

Theorem 2. Let H < 0, D > 0 and a ∈ R \ {0}. Consider
the system (34) for f being the quadratic map (1). Suppose
that the function β : [0, D] → R of bounded variation
satisfies Assumption 1 and the constants k > 0 and c > 0
are chosen so that c > −kH. Then, for each ρ > 0, there
exist constants ω∗ > 0 and ρ0 ∈ (0, ρ) such that, for any
ω > ω∗ with γ(ω) 6= 0, any solution to (34) for an initial

value X0 = [θ̃0, u0(·), U0]> ∈ D(A) with ‖X0‖H ≤ ρ0
converges to an O(1/ω)-neighborhood of the origin. In
addition, the following estimate holds:

lim sup
t→∞

|y(t)− f∗| = O
(
1/ω2 + |a|2

)
. (35)

To prove the theorem, we consider the averaged version of
the system (34).

4.1 Average system

Let us obtain the average system associated with the
closed-loop system (25)–(28). The expression (24) of the
output y has the same form as the one in common
delay-free extremum seeking problems. Hence, average
computation done in the literature, especially in (Ghaffari
et al., 2012), also works for our problem.

If f is the quadratic map (1), the average of (33) can be
explicitly computed as

ω

2π

∫ 2π/ω

0

F3(ωτ,X)dτ

= HX1 +H

∫ D

0

β[D,σ]X2(D − σ)dσ (36)

for each X = [X1, X2, X3]> ∈ H. From the argument
above, the average system associated with the closed-loop
system (25)–(28) is given by

˙̃
θa(t) =

∫ D

0

ua(D − σ, t)dβ(σ), (37)

uat (x, t) = uax(x, t), x ∈ (0, D), (38)

ua(D, t) = Ua(t), (39)

U̇a(t) = −cUa(t) + ckH

(
θ̃a(t)

+

∫ D

0

β[D,σ]u
a(D − σ, t)dσ

)
. (40)

It can be inferred from the relation ua(x, t) = Ua(x+t−D)
that Ua is a filtered value of the signal

kH

(
θ̃a(t) +

∫ D

0

β[D,σ]U
a(t− σ)dσ

)
, (41)

This signal is strongly related to the predictor feedback
control law (21).

Indeed, applying the integration by parts for the Riemann-
Stieltjes integral, changing the variable of integration,
reversing the order of integrations leads to

kH

(
θ̃a(t) +

∫ D

0

β[D,σ]U
a(t− σ)dσ

)

= kH

(
θ̃a(t) +

∫ t+D

t

∫ D

τ−t
Ua(τ − σ)dβ(σ)dτ

)
. (42)
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The right-hand side completely coincides with (21) if the
gain −k is replaced with kH. Hence, the proposed U given
by (22) with (23) realizes a filtered predictor feedback
control law with the gain kH in the average sense.

4.2 Stability of the average system

The stability of the average system (37)–(40) is analyzed
in this subsection.

Lemma 3. Consider the system (37)–(40) for some D > 0
and H < 0. Let β : [0, D] → R be a function of bounded
variation satisfying Assumption 1. Then, for each k > 0,
there exists c∗ > 0 such that, for any c > c∗, the following
assertions hold:

(i) The system (37)–(40) admits a unique solution in
C1([0,+∞);H)∩C([0,+∞);D(A)) for any given ini-

tial data [θ̃a(0), ua(·, 0), Ua(0)]> ∈ D(A), where the
subspace D(A) ⊂ H is defined by (31).

(ii) There exist constants λ > 0 and M > 0, which are
independent from the initial data, such that∥∥∥[θ̃a(t), ua(·, t), Ua(t)

]∥∥∥
H

≤Me−λt
∥∥∥[θ̃a(0), ua(·, 0), Ua(0)

]∥∥∥
H
. (43)

The complete proof is omitted due the space limitation.
The idea is the use of a Lyapunov functional of the form

V (t) =
c2

2
ϑ(t)2 +

b

2

∫ D

0

eα(x−D)ua(x, t)2dx+
1

2
Ua(t)2,

(44)
where ϑ(t) ∈ R is defined by

ϑ(t) = θ̃a(t) +

∫ D

0

β[D,σ]u
a(D − σ, t)dσ +

1

c
Ua(t). (45)

Differentiating ϑ with respect to t gives ϑ̇ = kH(ϑ−Ua/c).
This property allows us to show the existence of λ > 0 such
that V̇ ≤ −2λV . In this way, we can prove the lemma.

It should be emphasized that the construction of the
Lyapunov function (44) does not involve a backstepping
transformation unlike our previous study (Oliveira et al.,
2017). Instead, the variable ϑ defined by (45) is introduced.
Lyapunov functionals similar to (44) can be found in
(Jankovic, 2009; Mazenc et al., 2012).

4.3 Proof of Theorem 2

The theorem is a consequence of Lemma 3 and the aver-
aging theorem for infinite dimensional systems (Hale and
Verduyn Lunel, 1990). Hence, we omit details. However,
there is a remark that we should make. To apply the
averaging theorem, we need to check that the operator A
is a generator of strongly continuous semigroup TA on H
and the generated semigroup TA has a smoothing property.
The required property is as follows: for any h : [0,∞)→ H
being norm continuous, the following relations hold:

(i)

∫ t

0

TA(t− τ)h(τ)dτ ∈ D(A), t ≥ 0, (46)

(ii)

∥∥∥∥A∫ t

0

TA(t− τ)h(τ)dτ

∥∥∥∥
≤Meµt max

0≤τ≤t
‖h(τ)‖H, t ≥ 0, (47)

where M > 0 and µ ∈ R are independent from h. This is
called the property (H).

The operator A defined by (30) is surely a generator of
strongly continuous semigroup TA on H. However, TA
does not fulfill the smoothing property (H) in general.
Fortunately, the perturbation F defined in (32) merely
has the finite dimensional component F3. Hence, in our
problem, TA only has to satisfy (46) and (47) for h :
[0,∞) → H of the form h(t) = [0, 0, h3(t)]> for any
continuous h3 : [0,∞) → R. We can explicitly compute
the integral of TA(t − τ)h(τ) with respect to τ from 0
to t for given h(t) = [0, 0, h3(t)]>. It can be inferred from
the resulting expression that TA satisfies the property (H).
Then, the theorem follows from the exponential stability
of the average system and the averaging theorem.

5. NUMERICAL EXAMPLE

We confirm the effectiveness of the proposed scheme. Let
β be given by

β(x) =


0, 0 ≤ x ≤ D

2
,

2x

D
− 1,

D

2
< x ≤ D.

(48)

Since it is clear that this β satisfies the first condition in
Assumption 1. We have∫ D

0

θ(t− σ)dβ(σ) =
2

D

∫ D

D/2

θ(t− σ)dσ. (49)

Hence, the map f receives an average of the signal θ over
the past interval [t−D, t−D/2] at each t. We next calculate
γ in (8). Direct computation shows that

γ(ω) =
16

ω2D2
sin

(
ωD

4

)
, (50)

which implies that γ(ω) 6= 0 as long as ω 6= 4mπ/D for
each m ∈ Z. Thus, Assumption 1 holds. For β in (48), S
can be explicitly calculated as

S(t) =
aωD

4 sin (ωD/4)
sin

(
ω

(
t+

3

4
D

))
. (51)

Consequently, S is a sinusoidal function, but its amplitude
and phase have specific forms.

We conduct a numerical simulation. The unknown param-
eters of the map are set as f∗ = 15, θ∗ = 5, and H = −1.
The maximum delay is D = 5. The parameters in the
proposed extremum seeking scheme are chosen as a = 0.25,
ω = 6, k = 0.5, and c = 1. To improve the stability
of numerical computation, a high-pass filter s/(s + ωh)
is applied to y. The filtered signal is denoted by z. The
signal My in (22) is placed with Mz. The signal Ny in

(22) is also swapped with Ĥ, which is defined as a filtered
signal of Nz with the low-pass ωl/(s+ωl). We set ωh = 1
and ωl = 0.1. Initial conditions are such that θ̄(0) = 0
and U(σ) = 0 for any σ ∈ [0, D]. The initial values of the
filters’ states are also set as 0.

We first show the output y in Fig. 2 when the predictor
is not used. An instability is induced by the delay. We
next show the simulation results for the proposed scheme
in Fig. 3. The output y is plotted in (a) and it is observed
that y approaches to a neighborhood of the extremum f∗.

Similarly, the estimate θ̂ of θ∗ converges to a neighborhood
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Fig. 2. The measured output of the closed-loop system
without a prediction term in (22).
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(a) The measurement output y.
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(b) The estimate θ̂ of θ∗.

Fig. 3. Simulation Results for the proposed scheme.

of θ∗, as plotted in (b). Therefore, the proposed scheme
successfully seeks the extremum while compensating the
effect of the distributed delay.

6. CONCLUSION

In this paper, we have proposed a single-parameter ex-
tremum seeking scheme for a static map in the presence
of distributed input delays. To compensate the distributed
delay, we have introduced a new perturbation and probing
signals. Then, the extremum seeking scheme is developed
based on the predictor feedback control law. The effec-
tiveness of the proposed scheme is demonstrated by a
numerical simulation.
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