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Abstract: This paper addresses the problem of input saturation in wheeled mobile robot
control. Depending on the desired trajectory or on the terrain, wheel motors may be demanded
to work beyond their limits. This situation can lead to undesired performance, and therefore,
input saturation has to be properly managed. Although control allocation has been mainly
employed in overactuated systems to enhance the control distribution, it can be also utilized for
underactuated systems as well to grant performance. For this purpose, three different control
allocation strategies, along with Lyapunov-based time-varying feedback controller, are applied
to a differential drive mobile robot subject to input saturation. Experimental results illustrate

the performance of the proposed strategies.
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1. INTRODUCTION

Much attention has been given to the development of
control strategies for wheeled mobile robots. The main
difficulty in such systems arises from the fact that their
motion is subject, in general, to nonholonomic constraints
and, consequently their have more degrees of freedom than
control inputs (underactuated systems). A nonholonomic
system cannot be asymptotically stabilized by a time-
invariant control law in the Lyapunov sense (Brockett,
1983).

Nonetheless, much of the largely known control strategies
do not properly handle situations where vehicle actuators
can be required to work beyond its limits, for instance, in a
fast trajectory with elevated performance requirements or
even in terrains with inclination, where additional torques
can be required from the wheel motors.

In order to solve input saturation, a typical approach for
linear systems is to add an anti-windup mechanism in the
controller architecture (Galeani et al., 2009), e.g. PID con-
trol. For mobile robot control, typical control techniques
must undergo ad-hoc modifications to handle actuator
constraints, e.g. for backstepping control (Lee et al., 2001)
and adaptive control (Huang et al., 2013). In Necsulescu
et al. (1995) is proposed a predictive control to prevent
torque saturation, wheel slippage and robot tip-over. In
Chen (2014) is proposed a saturated controller combined
with a dynamic time-varying controller with slope restric-
tions, obtained by applying a finite-time control strategy.
In Huang et al. (2018), a robust neural network-based
control scheme is utilized to perform stabilizing, tracking
and to solve input saturation.
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The contribution of this work is to pursue a different
approach by adopting control allocation strategies. Con-
trol allocation has been mainly applied in overactuated
systems, which have the advantage of providing fault tol-
erance and control reconfiguration (Johansen and Fossen,
2013) by combining multiple actuators to reproduce a
given desired effort, according to an objective.

Here we propose to use several control allocation strategies
to grant performance in the case of input saturation, e.g.
in situations where the controller may demand an effort
beyond the capabilities of the system, and hence, the
actuators work saturated. In this sense, control allocation
is useful for both over or underactuated.

The advantage of control allocation over typical ap-
proaches to solve input saturation lies on the fact that
it can be split into two steps - a typical control law, called
high-level controller, and the control allocation itself, typ-
ically a constrained optimization problem. Thus, the gen-
eral strategy does not depend on high-level controller, and
several high-level controller strategies could be considered
to enhance control since the input saturation keeps be-
ing managed properly in the control allocation level. In
Monteiro et al. (2016) and Kirchengast et al. (2018), the
authors have adopted the backstepping and sliding mode
techniques as high-level controllers with different control
allocation strategies to deal with actuator constraints in
quadrotors. In Tohidi et al. (2017), an adaptive control
allocation method is proposed for overactuated systems.

The paper is organized as follows: Section II presents a gen-
eral modelling of nonholonomic mobile robots, the input
saturation problem and also important aspects concerning
control allocation. In Section III, three different control
allocation algorithms are presented: Direct Control Allo-
cation, Weighted Least Squares with Active Set and Linear
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Programming with Simplex. In Section IV, experiments in
a differential drive mobile robot are undertaken and their
results discussed.

2. PROBLEM FORMULATION

The kinematic model of a nonholonomic mobile robot can
be described (Siciliano et al., 2009) with respect to a given
inertial frame as

=G T (1)

where g € R? is a vector of generalized coordinates which
describes completely the configuration of the robot, 7 € R™
corresponds to the virtual control input vector, n accounts
for the amount of differential degrees of freedom of the
system and G(q) € R¥*" is composed by the input vector
field columns g;(¢q) with j =1,...,n.

Due to the rolling and sliding constraints in the wheels,
such systems have more degrees of freedom d than the
number of control inputs n, and therefore, the matrix G(q)
has more rows than columns.

On the other hand, the virtual control input vector 7 is
a result of the wheel velocities involved in the motion.
Thus, let B € R™ "™ be the input matrix, responsible for
performing a mapping between 7 and the control input
vector u € R™ applied to the wheel actuators, i.e.

T=Bu (2)

where the input matrix B can be seen as the contribution
of each wheel to the differential degrees of freedom of the
vehicle. In the control allocation context, B is denoted
control effectiveness matrix, which is particular to the
wheeled mobile robot under analysis.

2.1 Input Saturation

Actuators usually work in their linear region, whose range
is bounded by upper and lower limits u and u, respectively,
given by

u<u; <a, Vi (3)

A desired virtual control input vector 74 can be achieved
only if the corresponding desired control input wug lies
within this range. Otherwise, a phenomena called satu-
ration arises, which is a non-linearity present in every
actuator, and therefore, it cannot be neglected.

With the inverse mapping of (2) and under the assumption
that B is invertible, we can retrieve how much effort
the virtual control input 7 requires from the actuators,
according to

u=B"'7 4)

Given a desired virtual control input 74 and its corre-
sponding desired control input vector ug, if uy does not
lie in the range in (3), the actuators reproduce a saturated
control effort wusqs, such that ug; > usq:,; for one or more
actuators. Thus, 74 cannot be attained and a deteriorated
T is delivered, such that

=B (B 79)sat (5)

Hence, 7 does not fulfill the control requirements since
there exists one or more virtual control inputs 7;, such that
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Tj < Ta,j- Due to saturation, a control input w,.¢,; may lie
whether onto the limit u or @ for one or more actuators,
which consequently changes the direction of 7 with respect
to 74. Depending on the saturation level and on the actual
state, the robot deviates from the desired trajectory and
may be unable to recover itself, since increasing 74 will
be produced so as to take the robot to the desired state,
although the actuators still remain saturated.

2.2 Control Allocation

The control allocation problem consists of finding a control
input vector v € R™, such that a virtual desired control
input 74 is produced by all the actuators at every instant
t. If u satisfies the constraints in (3), then v € U, where U
is the feasible set of control inputs (Johansen and Fossen,
2013). Similarly, let A be the feasible set of virtual control
inputs 7, obtained from the inverse mapping in (4).

In case of saturation, 74 cannot be attained, and therefore,

the control allocation problem must primarily find a “best

possible” solution, which consists basically of minimizing

the virtual control input error. Hence, it is called error

minimization and calculated by the optimization problem
min: f(u) = ||Bu — 74| (6)
st u<u; <u, Vi

The most common norms utilized in the cost function are
the Iy, I3 and I ones (Bodson and Frost, 2011). There
are situations where control minimization is desired, such
as to reduce energy consumption or mechanical stresses
(Oppenheimer et al., 2010), although it is mostly regarded
as a secondary objective. Thus, the control allocation
problem may also pose as a mixed optimization problem,
in the form

min: f(u) = [|u = up|| + 7 [[Bu — 74| (7)

st u<u; <u, Vi

where u,, is a preferred control input vector and the weight
adjust factor « determines how much the error minimiza-
tion must be prioritized over the control minimization.

Hierarchically conceived, the control algorithm consists of
two levels, as depicted in the fig. 1. It begins with the high-
level controller, responsible for calculating 74, even though
the controller does not know much about the system, given
that 74 is calculated based only on the desired state g4 and
on the actual state q. The high-level controller can be any
conventional control technique, such as PID, Lyapunov-
based control (Aicardi et al., 1995), sliding mode (Young
et al., 1999), adaptive, etc. In the second level, a control
allocation algorithm maps 74 into individual actuator
positions u;. If 74 corresponds to a feasible virtual control,
ie. 7y € A, w is straightforwardly computed and the
problem is solved. Otherwise, u is determined at the cost
of degrading the system performance.

Prior to defining a control allocation technique, the pri-
mary and secondary (if applicable) objectives must be
regarded, while taking into account the main character-
istics of the technique to be employed and the benefits of
the norm of the cost function adopted (Bodson and Frost,
2011). Other related aspects are the number of actuators
and their layout, operating ranges and energy consump-
tion (Johansen and Fossen, 2013). However, unlike other
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Fig. 1. Control system structure concerning the application of control allocation in wheeled mobile robots.

typical approaches, the input saturation problem is not
directly managed by the control law adopted, but only in
the second level. This approach allows to employ any high-
level controller or even replace it by another one easily,
while the second level keeps managing input saturation
independently.

3. CONTROL ALLOCATION ALGORITHMS

In this section, three control allocation algorithms are
outlined, which are the Direct Control Allocation, Linear
Programming with Simplex and Weighted Least Squares
with Active Set.

3.1 Direct Control Allocation

The definition of control allocation was firstly presented in
Durham (1993), where the author proposed a method for
allocating controls when 75 € A. The objective of the Di-
rect Control Allocation (DCA) is to find a feasible control
input, such that the direction of the desired virtual control
remains unchanged and a performance deterioration can
be predicted when saturation occurs.

In Bodson (2002), the author reformulated the problem as
a linear optimization problem with equality constraints to
determine the scale factor o and u, in the form

max : f(a) =« g
s.t.: Bu=arg, arg €A (8)
where o < 1 means that the control power demand cannot
be met and 74 must be scaled back to lie onto the boundary
0A. In case where o > 1, 74 can be attained since uq € U.
Although this problem poses as a linear program, its
formulation is concerned with neither error minimization
nor mixed optimization.

8.2 Linear Programming with Simplex

Let & be a basic feasible solution of a linear programming

problem, such that & = [uT uz]T and us; € R™ is a vector
of slack variables. For the error minimization problem in
(6) with the l;-norm, a conversion from a standard linear
programming problem to the context of control allocation
is proposed in Oppenheimer et al. (2006), which is!

min : f(ug)=[0... 01 ... 1][“]

Us
Ug 0
—U —U (9)
s.t.: U > | u
—Bu + ug —Tq
Bu + ug Td

I Vector inequalities have to be considered as element-wise inequal-
ities.

AN

Fig. 2. The Simplex algorithm covers every adjacent ver-
tex of a feasible polytope to find the solution that
minimizes the cost function.

where the coefficient vector of the cost function is com-
posed by as many zeros and ones as the size of the vectors
u and ug, respectively.

Assuming that the optimization problem in (9) underwent
a pre-processing phase for removing redundancies and
linearly dependent rows and columns, now it can be solved
with any standard linear programming solver. A common
solver is the Simplex algorithm, which consists of finding
an initial basic feasible solution &y and covering adjacent
vertices with successive lower function cost f(us) in a
polytope defined by its feasible set, as depicted in the fig.
2. The search for an optimal feasible basic solution ends
when it is no longer possible to decrease the cost f(us).

Given that a Simplex solution is always located at the
vertex of a feasible polytope, some differential degrees of
freedom are prioritized to the detriment of others. Another
consequence is an unbalanced control distribution, since at
every instant, one or more actuators may be required to
operate at their limits, while the remaining ones work with
a lower load.

8.8 Weighted Least Squares with Active Set

In Hirkegard (2002), the mixed optimization problem is
revisited as a quadratic programming problem, which can
be written as

min : f(u) = [Wa(u = up) |5 + 7 [Wr (Bu = 70) 5

e (10)
st.ru<wu; <u, Vi

where W, and W, are weighting matrices for setting
priority to each actuator and to each degree of freedom,
respectively. Its cost function can be rewritten as

2

= (W) o= (W)
———’ ———

A b 2

(11)

Weighted Least Squares with Active Set (WLSSA) was
proposed in Hérkegard (2002) and demonstrated that an
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Fig. 3. A two-rear-drive-wheel mobile robot described by
its position and orientation with respect to an inertial
reference frame (X, Yp).

attainable control input u can be found within a required
time span, just like other control allocation algorithms,
and hence, it can be utilized in practical situations. Unlike
Simplex, WLSSA provides a better and simultaneous
convergence of the differential degrees of freedom, since the
cost function allows the solutions to be located anywhere
in U and also allows a more balanced control distribution.

4. HIGH-LEVEL CONTROLLER

Consider a differential wheeled mobile robot, as depicted
in the fig. 3, with two rear wheels with independent
actuators, responsible for providing motion, and a front
castor wheel for stabilization purposes only, such that its
configuration can be fully described by ¢ = [z y 1/J]T.

The robot cannot move sideways, since it is subject to
a nonholonomic constraint represented by the equation

[sinyy —cosy 0]g=0 (12)

Assuming no occurrence of slipping, the kinematic mod-
elling of the vehicle can be described by

x cos 0
¢= 19| = 91()11 + g2(q)72 = [smw v+ 0| w (13)
1) 0 1

where v is the linear velocity and w represents the angular
velocity.

In the example, the mapping from the right and left wheels

velocity u = [vy vl]T tor =1[v w]T is given by
v (b1 v
Jesli ]
R R

A Lyapunov-based control law is utilized in Aicardi et al.
(1995) to control a wheeled mobile robot in tasks such as
navigation, path-following and steering, and for generating
the desired virtual control input vector 74. However, it is
necessary to convert the kinematic equation in (13) from
Cartesian to polar coordinates. Consider that the robot,
initially at pose gg with respect to an inertial frame, is
required to travel to a desired pose ¢g4, as depicted in the
fig. 4. The distance error r represents the distance between
the poses g and ¢g4, such that » > 0; 6 stands for the desired
orientation angle and v is the actual orientation. The polar
coordinates r, a and 6 can be written as functions of the
Cartesian coordinates, which gives

Y,
0

| I
Ay I
|
| |
- Ir- I
|
|

1 | .

O I A.I I Xo

Fig. 4. Representation of the pose of the two-wheeled
mobile robot in polar coordinates.

r=+/Ax? + Ay?

0 = atan2(Ay, Ax)
a=60—1

(15)

Then we search a control law that produces a desired

virtual control input 74 = [vg wq ]T and makes the state
variables converge asymptotically to the limiting point
g=[000 ]T in finite time while » = 0 is avoided, provided
that it is a forbidden state. According to Aicardi et al.
(1995), a control law that satisfies the conditions of the
Lyapunov stability theory is given by
vg = (ko cos a)r;
Td =

cos asin « (16)

wa = k1o + ko (o + k3b)

which provides global stability properties and drives the
vehicle smoothly towards the desired pose gq.

There are other types of wheeled mobile robots available,
composed by castor, fixed or steering wheels, arranged
in different layouts, which result in robots that possess
two or three degrees of freedom and six different common
wheel and axle configurations (Zhao and BeMent, 1992).
Then, the Lyapunov stability theory or other control
techniques can be utilized to find suitable control laws to
be employed as high-level controllers combined with the
control allocation algorithms here discussed.

5. EXPERIMENTAL RESULTS

Control allocation algorithms are validated in a Roomba
621, a differential drive vacuum robot manufactured by
iRobot and depicted in the fig. 5. A USB to DIN cable
establishes a physical link between the computer and
Roomba, whereas the MATLAB Toolbox for the iRobot
Create 2 (Esposito, 2015) is utilized to create a connection
with the robot, to send commands and to read its sensors.

The wheel linear velocities bounds u and @ are set as

—02m/s<wu; <02m/s, i=1,2 (17)
The Roomba robot is required to navigate through a pre-
planned path similar to a lane-change maneuver on a
flat plane. It consists of waypoints (x4, ¥q,), such that

xqg = [-45 -4 -35... 35 4]T and the next desired
coordinate 4,41 is set when the distance error reaches
r < 0.1 m. The desired coordinate yg4 ; is a function of the
actual desired coordinate x4,; and is given by
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Fig. 5. The iRobot Roomba 621.

—0.9, x4, <—125
Yd,i = sin(zd,i), —1.25 S Ld,i S 1.5 (18)
1, Tq;> 1.5

Controller gains are defined as ky = 3, k; = 1.5 and
ks = 0.5. For the WLSSA, the parameters are W,, = I,
W, =1, up = [0 O]T and v = 10° for prioritizing the
error minimization. In the experiment, the robot starts at
pose ¢(0) = [-5 —1 7r/12]T with respect to an inertial
frame and the maneuver lasts t; = 50 s, regardless of the
control allocation technique employed.

5.1 Discussion

Fig. 6 displays the trajectory executed by the robot
when saturation is not properly managed. Although some
desired poses are reached during the experiment, the
performance is poor, since input saturation leads the
vehicle through an inefficient trajectory. When a new
desired pose ¢qq is calculated, the high-level controller
computes a desired virtual control 74 that demands efforts
beyond the actuator bounds. Since input saturation is not
properly handled, the resulting 7 produces large errors in
the trajectory.

(a)

which results in an efficient trajectory towards the desired
pose qq, although not so fast as required.
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Fig. 7. Input saturation managed by the DCA algorithm.
(a) trajectory traveled by the robot; (b) right wheel
velocity; (c) left wheel velocity.

The WLSSA and Simplex also present efficient results, as
depicted in the figures 8 and 9. Both present equivalent
results in terms of tracking, although the dynamics of
the linear and angular velocities present some remarkable
differences. Since the solutions of the Simplex algorithm
are always located on the vertex of a feasible polytope,
they are prone to prioritize the angular velocity, whereas
WLSSA present a more uniform convergence of the degrees
of freedom.

()

[e]
x

initial pose
waypoints

1k O  initial pose X X X X X X -
X  waypoints
unmanaged saturation
=g
S0+ 4
>

-5 -4 3 2 -1 0 1 2 3 4
x [m]
(b) ()
0.2 0.2
' T
E 0.1 L L*‘ Lﬂll H ' h E 0.1
= 0 = 0
0.1 -0.1
0 20 40 0 20 40
t[s] t[s]

Fig. 6. Unmanaged input saturation. (a) trajectory per-
formed and the desired poses gq; (b) right wheel
velocity; (c) left wheel velocity.

With the DCA algorithm, the direction of the desired
virtual control 74 is maintained, as depicted in the fig. 7,

WLSSA

v, [m/s]
v [m/s]

0 20 40 0 20 40
t [s] t [s]

Fig. 8. Input saturation managed by the WLSSA algo-
rithm. (a) trajectory traveled; (b) right wheel velocity;
(c) left wheel velocity.

In table 1, some performance data concerning the control
allocation algorithms revisited in this experiment are pre-
sented, which consists of the relative virtual control error
(RVCE), given by
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Fig. 9. Input saturation managed by the Simplex algo-
rithm. (a) trajectory traveled; (b) right wheel velocity;
(c) left wheel velocity.

RVCE = |74 — 7l / [|7all, (19)
and the relative control input error (RCIE)
RCIE = [ug —ull / [[uall, (20)

The algorithms present no noticeable overall difference in
the experiment, although the DCA has presented a higher
RVCE, as expected, since it is not related to the error
minimization but with the direction maintenance only.

Table 1. Performance Analysis

Algorithm | DCA | WLSAS | Simplex
RVCE (%) 74.8 73.4 73.7
RCIE (%) 72.2 72.3 73.6

6. CONCLUSION

Control allocation was applied to a multivariable under-
actuated system, which is a commercial differential drive
two-wheeled mobile robot, and was subject to input satu-
ration in the experiment, although other types of wheeled
mobile robots could have been addressed as well, provided
that the control effectiveness matrix is known. The exper-
iment could also have been undertaken in an overactuated
system to demonstrate equivalent results.

At the presence of saturation, the control allocation tech-
niques granted performance in the robot and made it work
within the linear range of its actuators along the trajec-
tory. They also enforced a behavior according to the norms
of the cost function adopted and the control allocation
objectives, as detailed along the paper and presented in
the table 1.

As topics for future research, control allocation promotes
some changes in the direction and in the performance
demanded by the high-level controller at the occurrence of
saturation, which could be better visualized with a stabil-
ity analysis. Moreover, other control allocation techniques
available could be investigated to manage the saturation
problem, just like adaptive control allocation and [, norm
algorithms.
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