
Adaptive sampling-based motion planning
with a non-conservatively defensive
strategy for autonomous driving

Zhaoting Li ∗,? Wei Zhan ∗∗ Liting Sun ∗∗ Ching-Yao Chan ∗∗

Masayoshi Tomizuka ∗∗

∗Harbin Institute of Technology, Harbin, China, 150001.
∗∗University of California, Berkeley, CA, 94706 USA (e-mail:

wzhan@berkeley.edu)

Abstract: Sampling-based motion planning methods are widely adopted in autonomous
driving. Typically, sampling can be decoupled into two layers: a path sampling layer and a speed
profile sampling layer. For the path sampling layer, traditional methods tend to sample with
a uniform distribution over the whole feasible space, which might cause either computational
inefficiency or poor performance if the sampling resolution is not set appropriately. To solve this
problem, we propose an adaptive path sampling approach that samples from a time-varying
distribution depending on the dynamic environment and potential costs of the ego vehicle. Such
sampling strategy is then combined with a non-conservatively defensive strategy in the speed
sampling layer to generate a set of safe but not overcautious trajectories. The proposed motion
planning framework is tested both in simulation and a real autonomous vehicle in a roundabout
scenario. The results demonstrate that it can efficiently generate non-conservative but defensive
trajectories to safely drive the vehicles in dynamic environments full of uncertainties.

Keywords: Autonomous Driving, Motion Planning, Adaptive Sampling

1. INTRODUCTION

In the past three decades, both academia and industry
have invested tremendous efforts in autonomous driving.
Motion planning for autonomous driving plays an impor-
tant role in generating vehicle trajectories that reach a
goal region from a start point while avoiding obstacles
and satisfying many requirements including time-efficiency
and user comfort. Although many learning-based motion
planning algorithms have been proposed such as imitation
learning in Sun et al. (2018a) and inverse reinforcement
learning in Sun et al. (2018b), as well as reinforcement
learning in Sallab et al. (2017), most of the motion plan-
ning algorithms are model-based since it can assure safety
which is of significantly important for autonomous vehi-
cles.

Typically, model-based motion planning includes two com-
ponents: path generation and trajectory generation (i.e.,
the speed), both of which are fundamental modules for
safe autonomous driving. For path generation, many
traditional sampling-based motion planning methods in
robotics have been applied into autonomous vehicles, in-
cluding rapidly-random exploring tree (RRT), Probabilis-
tic RoadMap (PRM), etc., according to LaValle (2006).
Lindemann and LaValle (2005) has pointed out that ran-
domization has great success in finding a feasible path even
in NP-hard problems. The application of randomization in
autonomous driving, however, might not be safe enough

? This work was conducted during Zhaoting Li’s visit to Mechanical
Systems Control Laboratory at University of California, Berkeley.

since it may result in poorly connected graphs with bad
reproducibility, according to Claussmann et al. (2019).
Although they are in general computationally efficient to
find a feasible path, these random sampling-based methods
tend to fail to find the optimal path in most of the scenar-
ios. On the other hand, deterministic sampling approaches
enumerates all possibilities over the feasible space with
a pre-defined resolution. Although their reproducibility is
good, they suffer from the curse of dimension. There is
a trade-off between time efficiency of the algorithm and
optimality of the solutions. Higher sampling resolution will
help to find better solutions, but it will in the meanwhile
decrease the time efficiency, leading to dangerous maneu-
vers for autonomous vehicles. One direction to speed up
the runtime of sampling algorithms while preserving the
quality of the solution is to change from uniform reso-
lution to non-uniform ones to improve the sampling effi-
ciency. Ichter et al. (2018) proposed to use a non-uniform
resolution in RRT-based on a learned distribution from
human demonstrations. Kumar and Chakravorty (2012)
introduced an adaptive-resolution-based sampling strategy
in PRM by explicitly utilizing the information encoded in
the connectivity graph.

Path planning is mainly handling the routing and static
obstacles in the environment. Most of the collision avoid-
ance with dynamic obstacles, as well as increasing com-
fort and time-efficiency of the trajectory are tackled by
the trajectory planning layer since it directly generates
the speed and acceleration of the vehicle. Dealing with
dynamic obstacles is hard, since the behaviors of other
road participants are full of uncertainties. The trajectory

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 15841

planner needs to consider all possibilities and generates
trajectories that are defensive enough to protect the au-
tonomous vehicle, but not too conservative, i.e., sacrificing
too much efficiency and comfort of the vehicle/passengers.
Such non-conservatively defensive strategy has been pro-
posed and utilized in various scenarios with uncertainties
from prediction (Zhan et al. (2016)) and perception (Sun
et al. (2019)). However, traditional sampling approaches
in the trajectory planning layer cannot generate such non-
conservatively defensive strategies due to their uniform
sampling along the planning horizon. Most of them tend
to be over cautious.

In this paper, we propose novel sampling approaches in
both the path layer and the trajectory layer to address
the aforementioned two problems. For path layer, we also
use non-uniform resolution. Instead of learning it from
human demonstrations which requires additional data,
we propose to adaptively adjust the resolution based
on the surrounding environment and the objectives of
the ego vehicle. For trajectory layer, we introduce the
decision-making module with uncertainties into the speed
sampling strategy to generate non-conservatively defensive
trajectories.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the overall framework of the motion plan-
ning strategy, followed by the details for the proposed
path planner by adaptive sampling method in Section 3.
Section 4 shows the trajectory planning layer with the
non-conservatively defensive strategy (NCDS). Section 5
presents the experiment results and Section 6 concludes
the paper.

2. OVERVIEW OF THE FRAMEWORK

The overall planning scheme is shown in Fig. 1.

Fig. 1. An overview of the motion planning framework

As shown in Fig. 1, the path generation part performs an
adaptive sampling method whose sampling distribution is
adaptively changed according to the environment, partic-
ularly for the static obstacles. After generating a graph
with many sampling nodes, dynamic programming is used
to find the optimal collision-free path. After that, the pure
pursuit controller is used to track this piecewise-linear path
to generate a smooth and collision-free path. Based on the
path generated by the first part, the trajectory generation
part will generate the optimal speed profiles, consider-
ing the comfort, efficiency and safety in the presence of
dynamic obstacles. This is achieved by two steps. First,
the speed reference is generated by time-optimal speed
plan that satisfies several constraints. Then, a local speed
sampling is conducted to avoid dynamic obstacles. In the
second step, NCDS is utilized. Once all samples from both

layers are obtained, a cascaded ranking method is applied
to select the best trajectory candidate for the autonomous
vehicle.

3. PATH PLANNER WITH ADAPTIVE SAMPLING

By sampling many points whose distribution is uniform
on the road or along a reference, we can generate a graph
consisting of nodes with different costs. Then we can use
dynamic programming to find the nodes sequences with
minimum costs.

3.1 Graph generation

Roads are always bounded by two edges, and a centerline
or reference can be obtained via perception module or map
information. Therefore, this enables us to sample many
nodes along the centerline whose positions have regular
patterns. A uniform sampling pattern can be found in Gu
et al. (2016), which is shown in the first picture of Fig.2.
The quality of path generated by this uniform pattern
is highly limited with the resolution. However, higher
resolution tends to result in more runtime during dynamic
programming. In our adaptive sampling method, this limit
is solved by sampling important areas with more layers and
sampling each layers guided by cost distribution.

We define the centerline as the s axis of the coordinate, the
middle point of our car as the origin and the vertical line
of the centerline as the d axis, respectively. The graph of
road is constructed by many ordered layers and one layer is
composed of many nodes. The sampling patterns of nodes
in a graph are determined by two distributions: the sam-
pling distribution of layers and the sampling distribution
of nodes in one layer. Suppose the number of layers is N ,
and a layer is denoted by Li (i = 1, 2, . . . , N). We define
the number of nodes on layer Li is M , the location of a
node on Li is denoted by nij (j = 1, 2, . . . ,Mi).

Fig. 2. Uniform sampling and adaptive sampling

Each node in this graph has a cost. We compute the cost
of each node by applying repulsive forces and attractive
forces on it. This cost computation way is similar to a
discrete elastic band method proposed by Gu (2017). The
repulsive forces are generated by static obstacles to make
the path collision-free. The repulsive force Fr on node nij
are computed by this equation (1) proposed by Quinlan
and Khatib (1993):

Fr =

{
(d0 − d) ∂d/∂nij , d < d0

0, d ≥ d0 , (1)

where d0 is the distance from obstacles up to which the
force is applied and kr is the repulsive force gain. The
attractive forces are generated by the centerline to make

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15842

the path on the road. Attractive forcesFa are computed
by the distance from the centerline. Then the cost of node
nij is:

Cost (nij) = (kaFa + kcFc)
2
. (2)

3.2 Adaptive sampling method

The core idea of this adaptive sampling method is to sam-
ple with a non-uniform resolution. This method sample
more useful areas with a high resolution to help us find
an optimal path faster. We believe that usually important
areas are near obstacles. Take the scenario where there
is one obstacle as an example. To make more layers near
obstacles, two normal distributions are added at Ostart

and Oend respectively, as shown in Fig. 3. Where Ostart

and Oend are the locations of the start edge and the end
edge of the obstacle respectively.

Fig. 3. Normal distributions added near obstacles

These two normal distribution are denoted by:

f1 (s) = exp
(
−(s− µ1/σ1)

2
/

2
)/(√

2πσ1

)
f2 (s) = exp

(
−(s− µ2/σ2)

2
/

2
)/(√

2πσ2

) (3)

Then the distribution of layers is

F (s) = N (f1 (s) + f2 (s) + ω/l)/(2 + ω). (4)

The area of this new distribution is

H (s) = N (Φ1 (s) + Φ2 (s) + ωx/l)/(2 + ω), (5)

where N is the number of layers, ω is the weight of uniform
distribution and two normal distributions and l is the
length of road. Note that H (l) = N . To find the location
of layers, we can divide the area of this new distribution
into N parts. Then the problem of finding the location of
layers can be transformed into this mathematic problem:
Find all the s ∈ [0, l] which satisfy

H (s)− k = 0, (k = 1, 2, . . . , N) . (6)

This equation can be solved it by newton method whose
update step in every loop is limited by min(3σ1, 3σ2).
Besides, the value of Φ1 (s) ,Φ2 (s) can be calculated by
the std::erf function in C++. The area of standard normal
distribution can be solved by this equation:

Φ (s) = 0.5 + 0.5erf(s
/√

2), (7)

where the error function erf(s) can be expressed as:

erf(s) = 2

s∫
0

exp
(
−t2

)
dt/
√
π. (8)

After determining the location of layers, the location
of nodes on each layer can be determined by a biased
sampling method. The uniform sampling way of nodes on
one layer is also inefficient. For example, it is obvious that

we do not need to sample too many points in the places
under centerline if there is an obstacle under centerline
in front of us. We also do not need to sample points
within or near obstacles. The biased sampling method
has two steps. Firstly, the costs of nodes sampled by
a uniform distribution on one layer are calculated by
equation 2. Define the costs of these nodes on one layer
as Cm (m = 1, 2, · · · ,M), where M is the number of nodes
on one layer. Define the location of these corresponding
nodes of these costs on one layer as dm (m = 1, 2, · · · ,M).
A cost distribution function fcos t (d) can be generated
by connecting the cost value of adjacent nodes with line
segments, which is calculated by equation 9.

In the interval [di, di+1] (1 ≤ i ≤M − 1), fcos t (d) can be
represented as

fcos t (d) =
d− di+1

di − di+1
Ci +

d− di
di+1 − di

Ci+1. (9)

Then the distribution of nodes fnode (d), in one layer can
be obtained by this cost distribution by equation 10, which
is shown in Fig. 4.

fnode (d) = 1/ [fcos t (d) + 1] . (10)

To determine the location of nodes on one layer, the
method is the same as the method used in the determi-
nation of location of layers.

Fig. 4. Biased sampling guided by cost distribution on one
layer

To find a collision-free path is to find a node sequence
{nk|nk ∈ Lk, k = 1, 2, . . . N} , which minimize the total
cost of these nodes:

arg min
{nk|nk∈Lk,k=1,2,...N}

N∑
k=1

Cost (nk). (11)

Then this problem can be solved by dynamic program-
ming. The problem can be divided into this sub problem
that find a node on layer Lk that minimize the total cost
from this node to the end node:

Costtoendmin (nk) = Costtoendmin (nk+1)
+Cost (nk) + |nk − nk+1|

, (12)

where |nk − nk+1| denotes the distance between node nk
and node nk+1. This item is added to smooth the path,
which has the same effects with the contractive forces in
discrete elastic band method.

3.3 Smooth by pure pursuit controller

The collision-free path consisting of nodes sequence is
piecewise-linear, which is not smooth in curvature and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15843

sometimes kinematically infeasible. The kinematic bicycle
model proposed by Gillespie (1992) and the pure pursuit
controller proposed by Coulter (1992) is used to smooth
this path. The kinematic bicycle model can be written in
this two-input form:

ẋ
ẏ

θ̇

δ̇

 =

 cos (θ)
sin (θ)

tan (δ)/L
0

 v +

 0
0
0
1

 δ̇, (13)

where v and δ̇ are the longitudinal velocity and the angular
velocity of the steered wheel respectively. θ denotes the
heading of the vehicle. We use the pure pursuit controller
to track this piecewise-linear path. After computing the
steering angle δ by pure pursuit controller in each loop,
we set the speed v to a small constant value. Then we can
update the state of the car model by equation (13). The
final path is consisted of all the states during the loop of
update by pure pursuit controller. The smoothed path is
not equal to the original collision-free path, which means
that it has a very small possibility that the smoothed
path is not collision-free. Therefore, a final evaluation on
this path is conducted. The calculation of the cost of this
path is similar to the calculation of cost of nodes. If the
cost exceeds the threshold of safety, a replanning whose
sampling distributions need to be modified is required.
After this smoothing part, the path is both collision-free
and kinematically feasible.

4. SPEED PLANNER WITH THE
NON-CONSERVATIVELY DEFENSIVE STRATEGY

4.1 Trajectory sampling

Suggested speed profile generation Till now, a smooth
and collision-free path is generated, but the speed infor-
mation is still unavailable. A suggested speed profile is
generated by finding a time-optimal speed plan under sev-
eral constraints. This suggested speed profile can be used
to calculate the cost of difference to speed reference. The
constraints include Max speed limitation, jerk constraint,
lateral acceleration constraint, longitudinal acceleration
and deceleration constraint and obstacle proximity con-
straint. The details can be found in Gu (2017).

Local trajectory sampling The trajectory sampling in-
cludes local spatial sampling and speed sampling. The
spatial sampling set is generated using cubic interpolation,
which is shown in Fig. 5.

Fig. 5. Local spatial sampling

This speed sampling method adopts a non-conservatively
defensive strategy (NCDS) proposed by Zhan et al. (2016).
For a typical sampling-based trajectory planner, the time
horizon of a planned trajectory is quite long compared
with the time actually executed by the host vehicle.

Different long-term motions are considered to deal with the
uncertainty of different cases in future. However, because
the motion that will be executed at the next planning cycle
should be determined, the short-term motion should be the
same these different cases in future.

The key idea of this sampling strategy is to sample the
trajectories under both the yielding and passing situation.
In the short-term horizon, these two trajectories under
these two situations have the same speed profile. In the
long-term horizon, the final speed of the trajectory under
passing situation is not smaller than the final speed of
the trajectory in the short term horizon. The final speed
of the trajectory under yielding situation is smaller than
the final speed of the trajectory in the short-term horizon.
Besides, we also sample some speed profiles whose stop
time is shorter than the long-term horizon. The sampled
speed profiles whose short-term final speed is 5m/s are
shown in Fig. 6.

Fig. 6. Speed profiles generation by non-conservatively
defensive strategy

To sample the speed in short-term horizon, we use cubic
curve to represent the speed profile:

vshort (t) = s0 + s1t+ s2t
2 + s3t

3. (14)

We have four constraints: start and final speed constraints,
start acceleration constraints, final jerk constraints. Given
the start speed v0 and acceleration a0, final speed vf0 and
jerk Jf0, and the short term horizon tf0, the unknown pa-
rameters {s0, s1, s2, s3} of short-term speed can be solved
by the following equations:

vshort (0) = v0 = s0
ashort (0) = a0 = s1
vshort (tf0) = vf0 = s0 + s1tf0 + s2t

2
f0 + s3t

3
f0

Jshort (tf0) = 0 = 2s2 + 6s3tf0

(15)

To sample the speed in long-term horizon, we also use the
cubic curve to represent the speed profile:

vE (t) = l0 + l1t+ l2t
2 + l3t

3, (16)

where E ∈ {pass, yield}. We have four constraints: start
and final speed constraints, start and final acceleration
constraints. Given the start speed vf0 and acceleration
af0, final speed vf1 and acceleration af1, and the long

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15844

term horizon tf1, the unknown parameters {l0, l1, l2, l3} of
short-term speed can be solved by the following equations:

vE (0) = vf0 = l0
aE (0) = af0 = l1
vE (tf1) = vf1 = l0 + l1tf1 + l2t

2
f1 + l3t

3
f1

aE (tf1) = af1 = l1 + 2l2tf1 + 3l3t
2
f1

(17)

Note that the long term horizon tf1 in passing situation is
fixed, while in yielding situation tf1 can be many different
values to make speed profiles in yielding situation have
different stop time.

Cost computation After sampling speed profiles and
path, we can get many trajectory candidates. Then we
can calculate the cost of different feature terms on every
trajectory candidate, which is shown in table 1.

Table 1. Cost computation on different features

Cost feature Computation

Static obstacles
∑

1/d2static
Moving obstacles

∑
1/d2moving

Lateral acceleration
∑(

v2κ
)2

Longitudinal acceleration
∑(

along

)2
Jerk

(
a0 − alast0

)2
Temporal diff. from ref

∑(
v − vref

)2
Spatial diff. from ref

∑[(
x− xref

)2
+
(
y − yref

)2]
Where dstatic and dmoving denote the distance from static
and moving obstacles respectively, κ represents the curva-
ture of the road, along is the longitudinal acceleration, a0
and alast0 are the start acceleration and the start accelera-
tion in the last planning cycle respectively, vref represents
the reference velocity which is generated in suggested
speed profile generation part, (xref , yref) denotes the ref-
erence path generated by the adaptive sampling method
.

Then we can add the cost of the passing and yielding
situation together with probability using this equation:

Costtotal = Costshort + P (pass)Costpass
+ P (yield)Costyield

, (18)

where P (pass) and P (yield) denote the possibility of
passing and yielding for the host vehicle, Costpass and
Costyield represent the cost of each feature in passing and
yielding situation respectively. The possibility is computed
using the method proposed by Schulz et al. (2018).

4.2 Cascaded ranking

After generating the trajectory candidates, the cascaded
ranking method is used to select an optimal trajectory. A
cascaded ranking method which was used by Gu et al.
(2016) and Wang et al. (2011) is used because of its
good tunability. In this method, we use buckets to select
candidates. All the buckets correspond to one of features
with different priorities. One bucket can be thought of as
a filter of its corresponding feature. After the trajectory
candidates are put into one bucket, only the candidates
satisfying some constraints can be returned, which is
illustrated in Fig. 7. After using several buckets to select,
we can get some feasible trajectories that have a relative

good performance. Then all the feature values of these
trajectories are compared and the trajectory that has the
maximum value in the feature with top priority is selected
as the final trajectory.

Fig. 7. Cascaded ranking

5. RESULTS

5.1 Simulation

We tested the adaptive sampling method on four scenarios,
which was compared with uniform sampling. In this test,
the distribution of some layers was still uniform, and we
sampled 15 points in one layer during uniform sampling.
In the cost and runtime figures shown in Fig. 8, the red
lines represent the cost and runtime of final path generated
by adaptive sampling and the blue lines represents path
generated by uniform sampling. Fig. 8 demonstrates the
efficiency of this adaptive sampling method compared
with the uniform one. With fewer sampling layers and
fewer sampling nodes, the adaptive sampling method can
generate a path that is close to the optimal one. The
runtime of adaptive algorithm was close to the runtime
of uniform sampling. Besides, sometimes it had a shorter
runtime because the biased sampling method could reduce
the search space of dynamic programming.

Fig. 9 demonstrates the sampling distribution of layers in
long box obstacles. This distribution showed the advan-
tages of adding normal distribution at locations of the start
edge and the end edge of the obstacle respectively because
this adaptive sampling distribution did not need to focus
too much on the middle of long box obstacles. That was
why we do not choose to add normal distribution directly
on the middles of obstacles.

5.2 Experiments

The experiments of this planning framework were con-
ducted on a Lincoln MKZ test vehicle. The test scenario
was extracted from a roundabout contained in the IN-
TERACTION dataset (Zhan et al. (2019b)). The driving
behavior of the other vehicles were generated either by
human drivers using a driving simulator, or replaying the
data in the INTERACTION dataset (Zhan et al. (2019a)).

In the first case, the motion of the obstacle car was
generated by a driving simulator. This obstacle car was
in the roundabout when the autonomous car was going to
enter this roundabout. The obstacle car had two routes
to choose. One was to keep itself in this roundabout,
while another was to exit the roundabout. According to
the traffic rule, the autonomous car should yield to the
obstacle car. We used sample-based planning with this
non-conservatively defensive strategy to deal with this
situation.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15845

Fig. 8. Simulation results of path generation using adaptive
sampling and uniform sampling method

Fig. 9. Sampling distribution in long box obstacles scenario

Fig. 10. Roundabout scenario

In Fig. 10, the figures on the right are the speed profiles
generated by our planner. In these pictures, the green
curve is the speed profile in passing situation, and the
red curve is the speed profile in yielding situation. The
passing possibility is also shown in the top right corner
of the picture. In Fig. 10, the left pictures show this
roundabout scenario. The long blue line represents the
road reference. The short green line represents the path
planned in future three seconds. The host vehicle is red
one that is on the blue line, while another vehicle was
considered as the obstacle.

When this obstacle car was in the roundabout and had
a chance to interact with the host vehicle, our planner
generated two speed profiles in both passing and yield-
ing situation. The speed profile in the yielding situation
guaranteed the safety of the host vehicle, while the pass-
ing situation enabled the host autonomous vehicle not to
overreact to the potential danger.

In the second case, the host vehicle is the red cuboid
and the blue cuboids represent other vehicles that interact
with the host vehicle. The trajectories of blue cars were
replayed according to the INTERACTION dataset. Since
the obstacles did not tend to yield to the host vehicles,
the host vehicle needed to slow down to keep safe. The
velocity profile is shown in Fig. 12.

6. CONCLUSION

In this paper, we proposed a planning framework includ-
ing two main novelties: adaptive path sampling method
with non-uniform resolution and non-conservatively defen-
sive speed profiles sampling method. This novel planning
framework addressed the inefficiency of current sampling
methods and the overcautious behaviors of current trajec-
tory planning methods.

For future work, a sampling distribution based on history
planning information will be tested. How to combine
the history information with the current environment

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15846

Fig. 11. Velocity profile and passing possibility profile.

Fig. 12. Yielding when other cars still go around of this
roundabout.

information will also be explored. More complex scenarios
will also be used to test the planning framework.

ACKNOWLEDGEMENTS

The authors would like to thank Songyuan Zhang, Yuelin
Deng, Chenran Li, Dingqian Liu and Xiaosong Jia for
their assists to accomplish the whole pipeline and conduct
experiments.

REFERENCES

Claussmann, L., Revilloud, M., Gruyer, D., and Glaser,
S. (2019). A review of motion planning for highway
autonomous driving. IEEE Transactions on Intelligent
Transportation Systems.

Coulter, R.C. (1992). Implementation of the pure pursuit
path tracking algorithm. Technical report, Carnegie-
Mellon UNIV Pittsburgh PA Robotics INST.

Gillespie, T.D. (1992). Fundamentals of vehicle dynamics,
volume 400. Society of automotive engineers Warren-
dale, PA.

Gu, T. (2017). Improved trajectory planning for on-
road self-driving vehicles via combined graph search,
optimization & topology analysis. Ph.D. thesis, Carnegie
Mellon University.

Gu, T., Dolan, J.M., and Lee, J.W. (2016). Runtime-
bounded tunable motion planning for autonomous driv-

ing. In 2016 IEEE Intelligent Vehicles Symposium (IV),
1301–1306. IEEE.

Ichter, B., Harrison, J., and Pavone, M. (2018). Learning
sampling distributions for robot motion planning. In
2018 IEEE International Conference on Robotics and
Automation (ICRA), 7087–7094. IEEE.

Kumar, S. and Chakravorty, S. (2012). Adaptive sampling
for generalized probabilistic roadmaps. Journal of Con-
trol Theory and Applications, 10(1), 1–10.

LaValle, S.M. (2006). Planning algorithms. Cambridge
university press.

Lindemann, S.R. and LaValle, S.M. (2005). Current
issues in sampling-based motion planning. In Robotics
Research. The Eleventh International Symposium, 36–
54. Springer.

Quinlan, S. and Khatib, O. (1993). Elastic bands: Con-
necting path planning and control. In [1993] Proceed-
ings IEEE International Conference on Robotics and
Automation, 802–807. IEEE.

Sallab, A.E., Abdou, M., Perot, E., and Yogamani, S.
(2017). Deep reinforcement learning framework for
autonomous driving. Electronic Imaging, 2017(19), 70–
76.

Schulz, J., Hubmann, C., Löchner, J., and Burschka, D.
(2018). Interaction-aware probabilistic behavior predic-
tion in urban environments. In 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 3999–4006. IEEE.

Sun, L., Peng, C., Zhan, W., and Tomizuka, M. (2018a).
A fast integrated planning and control framework for
autonomous driving via imitation learning. In Dy-
namic Systems and Control Conference, volume 51913,
V003T37A012. American Society of Mechanical Engi-
neers.

Sun, L., Zhan, W., Chan, C.Y., and Tomizuka, M. (2019).
Behavior planning of autonomous cars with social per-
ception. In 2019 IEEE Intelligent Vehicles Symposium
(IV), 207–213. IEEE.

Sun, L., Zhan, W., Tomizuka, M., and Dragan, A.D.
(2018b). Courteous autonomous cars. In 2018
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 663–670. IEEE.

Wang, L., Lin, J., and Metzler, D. (2011). A cascade
ranking model for efficient ranked retrieval. In Proceed-
ings of the 34th international ACM SIGIR conference
on Research and development in Information Retrieval,
105–114. ACM.

Zhan, W., Liu, C., Chan, C.Y., and Tomizuka, M.
(2016). A non-conservatively defensive strategy for ur-
ban autonomous driving. In 2016 IEEE 19th Interna-
tional Conference on Intelligent Transportation Systems
(ITSC), 459–464. IEEE.

Zhan, W., Sun, L., Wang, D., Jin, Y., and Tomizuka,
M. (2019a). Constructing a highly interactive vehi-
cle motion dataset. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
6415–6420. IEEE.

Zhan, W., Sun, L., Wang, D., Shi, H., Clausse, A., Nau-
mann, M., Kummerle, J., Konigshof, H., Stiller, C.,
de La Fortelle, A., et al. (2019b). Interaction dataset:
An international, adversarial and cooperative motion
dataset in interactive driving scenarios with semantic
maps. arXiv preprint arXiv:1910.03088.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15847

