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Abstract: In this research, one of the most important research questions that influence
the effectiveness of the used control strategies in heaving wave energy converters (WECs) is
addressed. A nonlinear extended Kalman filter (EKF) based state estimator to estimate the
wave excitation force and heave velocity in real-time is proposed. A holistic nonlinear model
involving both the mechanical and electrical sides of the WEC system is used. The proposed
estimator was compared with a simpler linear Kalman filter (KF) estimator under varying
sea state environment and electric loading conditions. Generally, both estimators produced
”statistically” good estimates, however, the EKF estimators outperformed its counterpart in
both the estimation accuracy and maintaining low incident energy drop.
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1. INTRODUCTION

The wave excitation force is a hydrodynamic force that
is applied by the incoming waves on the buoy when it is
held motionless (i.e., its velocity is zero). Despite being
the main driving force of the system, the wave excitation
force usually poses challenges to the engineers involved in
designing and developing wave energy technologies. Accu-
rate knowledge of the wave excitation force applied on the
WEC buoy is crucial in the design (pre-deployment) stage
and also during operation. In the design stage, accurately
calculating the wave excitation force is important to prop-
erly design the buoy geometry and size the corresponding
PTO system. While accurate real-time knowledge of the
excitation force — through measurement or estimation —
is important for implementing effective control strategies
that ensure optimum power absorption, system reliability,
and durability. To implement real-time control strategies
to control WECs, the wave excitation force needs to be
calculated or measured at every time instant (Babarit
and Clement (2006)). As for the excitation force cal-
culation, a linear causal relationship between the wave
elevation and the wave excitation force is approximated
by solving the excitation force problem for various wave
frequencies using hydrodynamic numerical tools such as
WAMIT (Taghipoura et al. (2008)). Note that this method
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assumes the wave propagation in space and time as a linear
system (i.e., linear wave theory) and it also causalizes the
originally non-causal relation between the wave excitation
force and the incoming wave elevation. Therefore, any real-
time calculation of the excitation force using the wave
elevation time series is only an approximation of what is
actually experienced by the buoy. One more issue in this
method is the need to carry out wave elevation measure-
ment upstream of the location of the WEC that is the wave
elevation measurement is not available in the vicinity of
the WEC which makes this method even more complex to
be implemented in real-time. Another method to obtain
the excitation force values in real-time is to measure the
hydrodynamic pressure applied at the wetted surface area
of the buoy (Falnes (2002)).

A simple linear Luenberger observer used to instan-
taneously estimate the excitation torque is presented
in (Kracht et al. (2015)). The linear observer was part of
an overall servo-tracking control problem where the buoy
velocity is manipulated to track a pre-determined reference
velocity using the estimated excitation force. Although the
control strategy was tested experimentally, a simplified
WEC model was used to construct the observer — that
is no nonlinearities were involved. In (Abdelkhalik et al.
(2016)), an extended Kalman filter is used to estimate the
wave excitation force using measurements of the hydro-
dynamic pressure at various points of the buoy wetted
surface and the buoy position. No control force is applied —
that is buoy was freely oscillating. The reported estimator
requires large number of pressure transducers which will
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Fig. 1. Schematic of the investigated WEC system along with the estimator.

further exacerbate the computational complexity of the
estimator. A simple linear Kalman filter estimator coupled
with a random walk model is discussed in (Nguyen and
Tona (2017)). The Kalman filter is based on a linear WEC
model, where the buoy motion states (i.e., position and
velocity) along with PTO control force measurement via
a load cell is fed to the estimator. The estimator goodness
is verified experimentally.

In this work, a nonlinear state estimator based on extended
Kalman filtering approach to estimate the heave wave
excitation force and the floater heave velocity is proposed.
A comprehensive nonlinear model of the WEC is deployed.
The proposed estimator requires only two the real-time
knowledge of two variables at a given time, that is,
the floater heave displacement and the electromagnetic
force applied by the power take-off (PTO) system. The
highly nonlinear friction force that might result from
the movement of the system parts against each other,
was modeled using a differentiable version of the well-
known Coulomb friction model with Stribeck and viscous
effects. The wave excitation force is modeled as a random
walk process with a drift. The goodness of the proposed
estimator has been assessed in simulation as part of a
complete wave-to-wire WEC system.

2. POINT ABSORBER WEC MODEL

In this study, a direct drive based semi-submerged point
absorber wave energy converter (WEC) is investigated
as shown in Fig. 1. The forces acting on the point ab-
sorber oscillating body in the heave degree-of-freedom of
motion can be expressed using Newton’s second law of
motion (Jama et al. (2018)), as

Jn(t) + fpio(t) = ma(t), (1)
where f3,(t), fpio(t) and a(t) are the hydrodynamic, power
take-off (PTO) forces and the heave acceleration of the
oscillating body, respectively. m represents the total mass
of the floater, the PMLG translator and the interconnect-
ing tether. The hydrodynamic force is composed of the
following forces,

Jo@) = fea(t) + fr(t) + fo(t) + fa(t) + f£(t), (2)

where fei(t), fr(t), fo(t), fa(t), and f;(t) are the wave
excitation, radiation, buoyancy, drag, and friction forces,
respectively. The wave excitation force is modeled as the
convolution of the excitation kernel function k., (t) and
the wave surface elevation 7(t),

fea(t) = kex () xn(t) = /0 kew (T)n(t — 7)dT = Ceqe(t),

(3)
qe(t) = Aeqe(t) + Ben(t)'
The wave excitation force can be approximated by a linear
time-invariant (LTT) model characterized by the auxiliary
state vector g.(t) and the state matrices A., B, and C..
Similarly, the radiation force is modeled as,

fr(t) = —meoa(t) — /0 kr(T)v(t — 7)dr. (4)

Here, mo, and k.(t) are the added mass due to the
water-floater interaction and the radiation kernel function,
respectively. The radiation integral is approximated by

/O kT(T)’U(t - T)dT ~ err(t)v

QT(t) = Arqr(t) + BT’U(t),
where g,.(t) is the radiation auxiliary state vector and A,.,
B, and C, are the radiation force state matrices. The
buoyancy force fp(t) is modeled as a function of heave
displacement, where the buoyancy stiffness coefficient S
is the constant of proportionality,

fo(t) = =Spz(t), (6)
According to Morison’s equation, the viscous drag force
fa(t) of a floating body is modeled as a quadratic function
of the relative velocity between the floater and the water
surface (Kracht et al. (2013)),

Jalt) = ~0.5pA,Calo(t) — vy ()] (v() vy (). (7)
where p, Ay, Cq, and vs(t) are the water density, floater
submerged surface area, drag coefficient and the water
surface vertical velocity, respectively. The friction force be-
tween the moving parts of the WEC can be modeled using

the well known Coulomb friction model with Stribeck and
viscous effects, that is

()
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Fig. 2. Continuous friction model approximation compared
to the discontinuous model

fr(t) = —=Fapasign (v(t)) — pov(t) (8)
(e~ e

2

v ) sign (v(t)),
where Fy,, pq, fv, ts, and vs are the normal force, the
dynamic coefficient of friction, the viscous coefficient of
friction, the static coefficient of friction and the Stribeck
velocity, respectively. The friction force model in (8) is
non-differentiable due to the discontinuity present in the
Coulomb friction component (i.e., at v(t) = 0). There-
fore, a continuous and differentiable approximation of the
Coulomb’s friction force model is needed. In (Brown and
McPhee (2016)), a continuous velocity dependent friction
model is proposed, as follows

f1(t) = =Fppqtanh(av(t)) — poo(t) 9)

— (s — pa)e” “2D? tanh (aw(t)).

The tunning parameter a determines the rate of increase
of the friction force from zero to the static friction. The
friction force models in (8) and (9) as function of heave ve-
locity are shown in Fig. 2. The force exerted by power take-
off (PTO) system is made of the summation of a spring
restoring force f,.(t) and the PMLG electromagnetic force

fem (),

fpto(t) = frs(t) + fem(t)v (10)
where f,s(t) = —Sys2(t), in which, S, is the PTO restor-
ing spring coefficient. For PMLG, the linear electromag-
netic force is directly proportional to the stator quadrature
current. In this work, the PMLG is loaded with a three
phase resistive load and a three phase diode rectifier, both
providing a passive (damping) control action as shown in
Fig. 1 (Jama and Wahyudie (2017)). The overall continu-
ous nonlinear model of the system in state space form can
be written as

#1(6) = (1) (1)
3(t) = o [Fealt) = Cra(t) = (S + Sy (1)

— 0.5pA4Cqlza(t) — v (t)| (z2(t) — vs(t))
— Fopgsign (z2(t)) — powa(t)
— (s — pra)e” 5 sign (w3(1)) + w(t)]
#3(t) = Arzs(t) + Braa(t),
y(t) = [z (t), z2(1)]-
where the state vector x(t) = [x1(t),z2(t), x3(t)] =

[2(t),v(t), g-(t)], the system input u(t) = femn(t) and the
output vector y(t) = [z1(t), z2(t)]. The wave radiation ef-

fect is modeled using 4th order linear model g, (t) € R4*1,
therefore, the state vector x(t) € R6*!

3. DERIVATION OF KALMAN FILTERING BASED
ESTIMATORS

In this section, two state estimators are derived. The
first being the linear Kalman filter based wave excitation
force estimator, while the second is based on an extended
Kalman filtering technique, allowing it to accommodate
the nonlinear forces. Both estimators are designed to es-
timate the floater heave velocity alongside the wave exci-
tation force. Practically, the estimators are fed with two
measured signals, one being the floater heave displacement
z(t) using a position sensor and the other is the PTO
electromagnetic force fe,,(t) using a force transducer (e.g.,
load cell). A schematic of the developed state estimators
is shown in Fig. 3.

3.1 Discretization of the WEC Model

The first step to design the state estimators is to discretize
WEC model. The system can be represented by the generic
discrete nonlinear model as follows

xr = fr1(Tr—1, up—1, Wi 1),

Yr. = gr(Tk, Ok),

wy, ~ (0,Q), o ~ (0, Ry).
The functions fr_1 and g are nonlinear state and mea-
surement functions at time instants k — 1 and k, respec-
tively. The state function estimates the system states at
k using the state vector xy_1, the input vector ux_1, and
the process noise vector wy_1 all evaluated at k — 1. The
process noise vector wy and the measurement noise vector
o are modeled as a white noise with zero mean and
known covariance matrices of Qy and Ry, respectively.
Since the wave excitation force is meant to be estimated
using other measured variables, the excitation force fe.(t)
at time instant k£ is modeled as a simple random walk with
drift process (Nguyen and Tona (2017)), that is

fem,k = fez,k—l + Tsek—b (13)
where T is the process sampling time and e is the ran-
dom walk drift modeled as a Gaussian noise with zero
mean. Therefore, by updating the state vector in (11) to
include fey k, the modified state vector at k is represented
as Ty = [T1k, T2k T3 k> Tak] = [T1 ks T2,ks T3 ks Ta k] =
[2ks Uk, Gr k» fex k) € R7<1. The process noise vector wy =
[w1 g, wa K, W3, wa k] € R7*. Using the backward Euler
method, the set of differential equations in (11) is trans-
formed to difference equations, as follows

T16 = T1h-1 + T [T2,0-1 + W1 k1],

(12)

(14)

To g = T2 k-1 + (4,51 — Cr3 -1

m 4+ Moo
- (Sb + Srs)xl,k’—l
— O.5pAde(fE2,k_1 — ’Uf)|1'27k_1 — ’Uf|

— F,pqtanh (azg ;1)
|22, k1]

— Fo(ps — Ud)ei( e
— HoT2 k-1 + ukfl] + Tswa j—1,
@3 = @3 -1+ Ts[Ar@s 41 + Brag k1

+ ’w3,k—1},

) tanh (g k—1)
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Tap = Taj—1 + Tswy p—1,
Yk = T1k + Ok-
Note that the excitation force random walk drift €, in
(13) is replaced with the system noise variable wy ;_1 in
(14).Moreover, the discretized version of the continuous
friction model depicted in (8) is used instead of (7).

3.2 Linear Kalman Filter (KF) Estimator

The linear Kalman filter estimator is derived by linearizing
the system model in (14). By omitting the drag force and
friction force dynamics, the resultant linear model is

xp = A1 + Brug—1 + wi_1, (15)
yr = Cily + o,

where

A; B B
() (B o

The state matrices Ay, By, and Cy are the discrete
counterparts of the following continuous state matrices

0 1 01x4 0
1
R S < B R S
m —+ Moo m 4+ Moo m + Moo

04><1 Br Ar
C=(100000).
Initializing the posteriori estimate of the state vector as

@} = 0147 and the posteriori estimation error covariance
matrix as P,\ = 0747, the state estimate (2}) is computed

at every sampling instant using the following equations

041

P; =AP" A +Qir1, (16)
K, =P, C[(C/P;C] + Ris1)"", (17)
&, = A2} | + Brug_1, (18)
& =&, + Kily, — Cidy), (19)

P,j = I - K,C))P,_, (20)

where P, P,:r , and K} are the priori error covariance
matrix at k, posteriori error covariance matrix at k, and
the Kalman gain at k, respectively. The matrix Qs r—1
is the process noise covariance matrix and Ry is the
measurement noise covariance matrix.

3.3 Eztended Kalman Filter (EKF) Estimator

Here, the system nonlinear model described in (14) is
utilized. The Jacobian matrix of the state function fr_1
is computed with respect to the state vector xy_1,

Ofk—1
0y 1
Of1 k1

0x1 k-1

O0fa. k-1
0x1 k-1

0f3 k-1

0x1 k-1

Ofar—1
0x1 k-1

Fp_, =

9f1k-1

0x2 k1

O0fa. k-1
0x2 k-1

0f3 k-1

0x2 k-1

Ofar—1
0x2 k-1

Of1 k-1

0x3 1

O0fa, k-1

0x3 1

Of3 k-1

0%3 -1

Ofa -1
0%3 -1

Of1k-1

0x4 1

O0f2 k-1
0% 1

Of3 k-1

0% -1

O0fa k-1
0% -1

O0fi,k—1 Of1 k-1 O0fi,k—1

- 1’ - S - O b
0x1 j—1 0x2 j—1 0x3 j—1 b
Ofre—1 _ 0 fok—1 _ Ts(Sp + Srs)
0%4 j—1 10Ty g1 m+me
Ofa -1 T,
Lo — 14+ —2 [ —pA,C -1
T i [ = pAuCa(w2k-1 — vf)

— aF,ug sechz(aaa?k_l) — fy

_(\12,k—1|)2 2
— Fo(us — pa)ae vs sech” (awg 1)
2F, (11 — L1l
- (1 gd)Iz,k L 2.k-1l)2 tanh (axlk_l)],
US
Ofok—r _ —TCr Ofpk _  Ts Of3 k-1 _0
Ox3 -1 M+me OTag—1 M+ Mo OT1 k1 ’
Of3 1— 0 _ 0 _
fa.6—1 _T.B,. fa.k—1 _IiT.A, fak—1 o,

0x2 k—1 0x3 -1 0x4 -1
Oftk—1  Ofax—1 . Oftr—1 _o Ofsr—1 1

= =Y = Uix4, 53— — L.
0x1 -1  OT2p—1 0x3 -1 024k

s

Similarly, the Jacobian matrices of the state function
fr_1 with respect to the process noise vector wy_1, the
measurement function g, with respect to xj, and the
measurement function g; with respect to the measurement
noise oy, are evaluated as

Wi = g
Owy_1
g
H,=—"—-=(1000 0).
k amk ( 1x4 )
g,

Dp==22% = (100054 0).

After initiating the posteriori state vector 37;;_1, the pos-
teriori estimation error covariance matrix P,:r_l and eval-
uating the state Jacobian matrix Fj_; at the initial :iz_l,

the extended Kalman filter estimate of the state vector is
computed as follows

P =F Pl FL + W, Qo WL, (22)
&, = feo1(&_),up1,0) (23)
K, = P_H/ (H,P_ H] + DyR.;, D))" (24)
& =2 + Ky [yr — g(2;,0)] (25)
P} = (I - KyHy) P, (26)

4. RESULTS AND DISCUSSIONS

The developed state estimators were examined at different
testing scenarios — both in wave environment and electric
loading conditions. The estimation goodness was evaluated
using the normalized mean square error (NMSE), which
measures the discrepancy between the true and estimated
states. Here, the true excitation force feq i is the one
actually experienced by the floater in the WEC plant
and it is calculated using the LTI model described in (3).
Another performance metric is the incident energy drop
(IED), which is calculated as

IED — Einc - Einc

mc
where Fj;,. and E’mc are the true and estimated incident
energy. The true incident energy is computed as Fj,. =

% 100, (27)
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Fig. 3. The EKF and KF estimators performance in
estimating feyr when Hy = 3 m and T}, = 13 s wave
is applied under linear load.

T, Z;nzl few iUk, whereas the estimated incident energy is
Eine = Ts > pty fex,kUk- The upper limit of the summation
m is the simulation run time duration. The simulations
were carried out in MATLAB/Simulink.

First, the estimation goodness was evaluated for both
estimators when a sea-state of significant height H; = 3 m
and peak period 7, = 13 s is applied. The terminals of
the PMLG was connected to a linear three phase resistive
load with per-phase resistance of 40 2. Both the drag force
and the friction force were applied on the WEC system
plant. As shown in Fig. 3, both estimators performed well
in estimating the true excitation force and heave velocity
signals. The NMSE of the estimated excitation force fez’k
for the EKF estimator is approximately 93.91%, while
the KF estimator produced an NMSE score of 86.01%.
As for the heave velocity estimate, the EKF estimator
managed to produce a very accurate estimate with NMSE
of 98.67%, whereas the KF performed as well with NMSE
of 97.52% as shown in Fig. 4. Using the EKF estimates,
the accumulated incident energy drop (IED) was around
24.68%, meanwhile, the KF estimater performed poorly
in this regard with an IED of 69.68%. Next, the friction
force was omitted and the performance of the estimators
was noted (Fig. 5). As expected, both estimators produced
better fe, r estimates, with NMSE scores of 96.93% and
94.38% for the EKF and KF estimators, respectively. This
is due to the absence of the highly nonlinear friction force
in the WEC plant. An improvement was also recorded in
regard to the IED metric, with 9.97% and 51.48% for
EKF and KF estimators, respectively. It is noteworthy
to mention that despite the fact that both estimators
produced fairly good estimates ”statistically”, that did not
guarantee good energy capturing performance, knowing
that the WEC control strategy will be largely dictated
by the estimated excitation force fem,. A more rapid
sea state (Hy = 2.75 m and T, = 7 s) was applied
to investigate the effect of changing the wave frequency
on the estimators performance under a linear (resistive)
load. As shown in Fig. 6, the EKF estimator performed
generally well, though the NMSE score (i.e., 87.88%) for
few,i is slightly lower than that of the slower sea state
(i.e., T, = 13 s) discussed carlier. Meanwhile, the KF
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Fig. 4. The EKF and KF estimators performance in
estimating v, when Hy = 3 m and T, = 13 s wave
is applied under linear load.
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Fig. 5. The EKF and KF estimators performance in
estimating fe, r when H; = 3 m and T, = 13 s wave is
applied under linear load, while neglecting the friction
force.

estimator suffered from a great drop in the estimation
NMSE (i.e., 69.34%). Despite the accuracy deterioration,
both estimators suffered from lower IED, that is 18.59%
and 63.10% for EKF and KF estimators, respectively.

Finally, the proposed EKF estimator was tested under
different electrical loading conditions. Instead of a linear
resistive load, a nonlinear load was utilized. As shown in
Fig. 1, the PMLG is connected to a three phase diode recti-
fier. The output of the rectifier is connected to a smoothing
capacitor and a 40 Q load resistor. This nonlinear loading
circuit offers a challenging scenario for testing the esti-
mator due to the discontinuities and harmonics present
in the stator current and therefore in the input damping
electromagnetic force fenm . As shown in Fig. 7(a), the
EKF estimator did not experience any noticeable dete-
rioration in performance in regard to NMSE, where the
EKF estimator scored 88.73% when nonlinear load was
applied, contrary to 87.88% in case of linear load. How-
ever, the EKF estimator scored a significantly better IED
score (8.68%) under nonlinear loading than linear loading
(18.59%). This can be explained that under the nonlinear
loading, the damping PTO force fe,,  is much larger than
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Fig. 7. The EKF estimator performance under two dif-
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that of a linear loading as shown in Fig. 7(b). This results
in lower heave velocities, which in turn minimizes the effect
of the velocity dependent nonlinear dynamics (e.g., drag
and friction forces).

5. CONCLUSION

In this work, a state estimator based on an extended
Kalman filter for estimating the crucial wave excitation
force and heave velocity in real-time is proposed. The
estimator is based on a comprehensive nonlinear model
that characterizes the wave-floater-PTO dynamic interac-
tions. The estimator was assessed rigorously under vari-
ous modeling, sea-state environment, and electric loading
conditions. In all the testing scenarios, the EKF estimator
managed to produce accurate estimates with NMSE scores
not less than 85%.
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Appendix A. DESIGN PARAMETERS
A.1 WEC paramters

The following are the values of the different WEC design
parameters:

m = 30189 kg, p = 1025 kg/m?, A, = 19.64 m?, m., =
28518 kg, S, = 197370 N/m, S,s = 60000 N/m, Cy = 1,
F, =12000N, g =1, gy = 2, s = 2,v5s = 1 m/s, a = 10.

—3.2914 —7.9461 —7.7067 —4.2272 1
1 0 0 0 0

A = 0 1 0 0 » Br = 1|
0 0 0 1 0

C, = [14745 52918 41145 0].

A.2 State estimators parameters

Qrf = Qlrs

Qe = [1x107°,1x107°,1x 10712/ 1x 1071, 1x 10715, 1 x
107155 x 10°],

Ry = 200,

Qekf =y pdek

Gekf = [1x1075,1x107°, 1x1071% 1x1071%, 1x 10715, 1%
10715, 1 % 101,

Rers = diag(100,1 x 1071°,1 x 1079,1 x 1071%,1 x
107191 x 10719,1 x 10719).
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