
Real-time Trajectory Generation for
Multiple Drones using Bézier Curves ?

Bahareh Sabetghadam, Rita Cunha, António Pascoal

Laboratory of Robotics and Engineering Systems (LARSyS), ISR/IST
University of Lisbon

Lisbon, Portugal
(e-mail: bsabetghadam,rita,antonio@isr.ist.utl.pt).

Abstract: Practical applications of drones are expanding into many new areas due to their
fast-evolving technology. Looking further into the future, it is very likely that applications will
require more than one drone to tackle a specific task, calling for reliable and efficient algorithms
that can generate collision-free trajectories for multiple drones, under timing constraints of
real-time applications. In this paper, we study a motion planning method based on the Bézier
parametrization of spatial paths with a special focus on the less addressed issue in this method,
(inefficient) constraint evaluation, that might hinder its use in real-time trajectory generation
for multi-drone applications. We take advantage of the Bézier curves properties to obtain a
small-scale optimization problem and find a finite set of inequalities that guarantee constraints
satisfaction. We also propose a method to lower the conservatism in the resulting set of
inequalities without the need to use unnecessary high-degree Bézier curves. Numerical results
illustrate the efficacy of the presented method in reducing the computational costs associated
with generating collision-free trajectories for multiple drones and re-planning them online with
a receding horizon.

Keywords: Trajectory Generation, Real-time, Bezier Curves.

1. INTRODUCTION

In recent years, there has been growing interest in use of
drones in many different areas due to the functionality
and benefits they offer in terms of mobility, speed, and
accessibility. In order to be successfully adopted in emerg-
ing application areas, such as transport, construction, and
media, the industry should push for highly autonomous
drones that, along with several other features, are capable
of planning their paths with no (or minimal) supervision.
Future applications may also involve a fleet of drones to
accomplish a task cooperatively, putting additional strain
on the drones’ motion planning system. It is therefore
imperative to develop algorithms that not only can reliably
generate collision-free trajectories but also are efficient
enough to satisfy real-time constraints.

The literature on multiple vehicles motion planning is
extensive (Goerzen et al. (2010)), yet, the majority of the
existing methods tend to be too slow as the number of
vehicles increases, or too complicated to be implemented
on the computing module onboard drones. One class of
methods that efficiently extends beyond the single-vehicle
applications includes polynomial-based methods, in which
the dimensionality in the problem is reduced by using
polynomial parameterization of the paths. However, the
result, as will be explained later in this paper, is a semi-
infinite optimization problem involving a finite number of
? This research was supported in part by the MarineUAS project
under the Marie Curie Skolodowska grant agreement No 642153,
the H2020 EU Marine Robotics Research Infrastructure Network
(Project ID 731103)

variables and an infinite number of constraints. In order
to obtain a computationally tractable problem, different
approaches have been employed.

(Van Nieuwstadt and Murray (1998)) is one of the first
papers that studied the evaluation of inequality constraints
in polynomial-based methods. The paper proposes three
methods to construct a finite constraint set for linear
inequalities, and also a method to approximate nonlinear
constraints by linear constraints, which can be done once
(off-line) assuming that the constraints do not change in
the course of a mission.

Time gridding is one of the approaches that has been
widely used for obtaining a standard optimization prob-
lem (Mellinger and Kumar (2011)). This method, though
straightforward, can not guarantee that the constraints are
satisfied for the whole travel time as they are only evalu-
ated on a finite number of points. Using fine discretization
can remedy this issue, however, it will increase the number
of constraints as well as the computation time.

Special types of polynomial parametric curves, such as
Spline (Van Parys and Pipeleers (2017), Mercy et al.
(2016)) and Bézier (Choi et al. (2008), (Choe et al., 2015)),
have gained popularity in motion planning as they can
add an intuitive and geometric interpretation to the design
and also provide computational benefits to the problem.
Mercy et al. (2017) exploits the ’convex hull’ property to
convert the infinite set of constraints on a spline curve
to a finite set of constraints on its coefficients. The so-
called B-spline relaxation can bring about a significant

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9411



reduction of the computational effort provided that all
constraints are expressed in the form of splines. To reduce
the conservatism, the paper also suggests representing the
curves in a higher dimensional basis by inserting extra
knots, which translates into having more constraints.

In Cichella et al. (2018) the De Casteljau’s algorithm
together with the Gilbert-Johnson-Keerthi distance algo-
rithm are used to ensure constraint satisfaction on the
entire Bezier curve. The employed method, as explained
in Chen et al. (2009), can find the curve extrema to any
desired accuracy, but the computational cost associated
with the resulting non-smooth functions is a major draw-
back to this approach.

In this paper, we will study the problem of real-time
motion planning for multiple vehicles. We will use Bézier
curves to parameterize the trajectories, due to their ease
of computation and stability. To address the semi-infinite
constraints, we exploit the Bézier curve properties to ob-
tain a finite set of constraints that guarantee constraints
satisfaction for the whole travel time. Then, we exploit the
de Casteljau’s algorithm to reduce the conservatism in the
obtained set of constraints. With the proposed method in
this paper, we can achieve the desired accuracy in the con-
straint evaluation, while avoiding excessive computations
for remote timeslots in a receding-horizon planner. The
efficacy of the proposed method is demonstrated by two
numerical simulations.

The remainder of this paper is organized as follows:
Section 2 explains the polynomial-based motion planning
method for differentially flat systems; Section 3 provides a
brief introduction to Bézier curves and their properties.
Section 4 proposes a method for converting the semi-
infinite constraints to a finite set of constraints; Section 5
shows two different simulation examples; and Section 6
discusses conclusions and future work.

2. POLYNOMIAL-BASED MOTION PLANNING FOR
DIFFERENTIALLY FLAT SYSTEMS

The motion planning problem that we address in this
paper consists of generating a feasible trajectory to steer
a vehicle to a desired final position while optimizing a
performance index and satisfying a set of constraints. This
problem can be formulated as the following optimization
problem.

minimize
x(.),u(.)

J(x(t), u(t)) (1)

subject to ẋ(t)− f(x(t), u(t)) = 0 t ∈ [0, T ] (1.a)

x(0) = x0 x(T ) = xf (1.b)

u(0) = u0 u(T ) = uf (1.c)

h(x(t), u(t)) ≤ 0 t ∈ [0, T ] (1.d)

The function, J(x(t), u(t)), evaluates the quality of the
trajectory based on the mission requirements and may
include different terms to guarantee smoothness and/or
energy efficiency of the trajectory. To ensure a feasible
trajectory, the vehicle’s model is considered as an ODE in
(1.a), where x ∈ Rnx and u ∈ Rnu are the state and the
input vectors of the model, respectively. The initial and
final conditions on the state and the input of the vehicle

Fig. 1. Converting the constraints in (1) to equivalent
constraints in the flat space using (3).

model are considered in (1.b) and (1.c). The problem
inequality constraints, such as state and input bounds
and obstacle avoidance, are included in h(x(t), u(t)), which
should hold for the entire travel time [0, T ]. The optimal
solution, (x∗(t),u∗(t)), will minimize the objective function
(1) and satisfy the set of constraints (1.a)-(1.d).

Polynomial-based methods take advantage of the differen-
tial flatness property of a dynamic system to deal with
the infinite-dimensional optimization problem (1). The
nonlinear system ẋ = f(x, u) is called ”differentially flat”
(LaValle (2006)) if there exists a set of flat outputs y ∈
Rny , ny = nu, of the form

y = d(x, u, u̇, ..., u(k)) (2)

such that

x = g(y, ẏ, ..., y(p1))

u = g′(y, ẏ, ..., y(p2)) (3)

In other words, the states and the inputs of a differentially
flat system can be expressed as functions of the flat outputs
and a finite number of their derivatives.

Using this property, trajectories consistent with the dy-
namics (1.a) can be planned in the space of flat outputs
Y . Figure 1 shows the transformation of the original con-
straints (1.a)-(1.d) in Y , where the dynamic constraint
is trivially satisfied and the equality and inequality con-
straints are expressed as

h̄(y, ẏ, . . . , y(p)) ≤ 0 t ∈ [0, T ]

h̄eq(y, ẏ, . . . , y(q)) = 0 t ∈ {0, T} (4)

The above set of constraints define the feasible region in Y
for the new optimization problem. Once the optimal y∗(t)
is obtained, the state and the input trajectories can be
derived by simple differentiations using (3).

The components of the flat output y(t) are differentially
independent, i.e. there is no differential relation of the form
R(y, ẏ, ..., y(r)) = 0 (Rigatos (2015)). Polynomial-based
methods employ this property to individually describe the
evolution of each flat output with a polynomial function

yj(t) =

nj∑
k=0

ajkΦk(t) j ∈ {1, . . . , ny} (5)

where ajk are the coefficients and Φk(t) are the polynomial
basis functions. Using the parameterization in (5), the
trajectory generation problem (1) is converted into a semi-
infinite optimization problem with a finite number of
variables and an infinite number of constraints.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9412



minimize
ajk

k=1,...,nj

j=1,...,ny

J(y(t), ẏ(t), . . . , y(p)(t)) (6)

s.t. h̄(t, ā) ≤ 0 t ∈ [0, T ] (6.a)

h̄eq(ti, ā) = 0 ti ∈ {0, T} (6.b)

where ā is the vector of variables including all coefficients
ajk. In the following, we use Bernstein basis polynomials
and Bézier curves to parameterize the output, and exploit
their properties to deal with the inequality constraints
(6.a).

3. BÉZIER CURVES

A Bézier curve r(τ) is a parametric polynomial that is
expressed in terms of Bernstein basis functions Bi,n(τ) and
a set of control points r̄i as

r(τ) =

n∑
i=0

r̄iBi,n(τ) (7)

where r̄i ∈ R2 for planar curves and r̄i ∈ R3 for spatial
curves. The Bernstein polynomial of degree n is defined
over the interval [0, 1] as

Bi,n(τ) =

(
n

i

)
(1− τ)n−i(τ)i τ ∈ [0, 1] (8)

where
(
n
i

)
= n!

i!(n−i)! . The Bernstein polynomials form a

partition of unity, i.e. the sum of Bi,n over all i is equal to
1 for any τ ∈ [0, 1].

n∑
i=0

Bi,n(τ) = (1− τ + τ)n = 1 (9)

Figure (2) shows the Bernstein polynomials of degree
4. The Bernstein basis together with the control points
determine the shape of a Bézier curve. Figure (3) shows a
Bézier curve of degree 4 which is coincident with its control
points at the two ends. A Bézier curve always starts and
ends at its first and last control points respectively.

r(0) = r̄0 r(1) = r̄n (10)

Moreover, a Bézier curve lies within the convex hull defined
by its control points. This property states that the entire
curve, except for the two endpoints, will be inside a
computable region.

Bézier curves have several properties and algorithms that
can be extremely useful in trajectory generation applica-
tions. We provide two of the most important ones below.

De Casteljau’s Algorithm:

Using the definition in (7) to evaluate a point on a
Bézier curve can cause numerical instability for high degree
curves. The de Casteljau’s algorithm has established an
alternative method to find r(τ) using only the control
points r̄i.

Fig. 2. Bernstein basis functions of degree 4.

Fig. 3. A Bézier curve of degree 4 contained within the
convex hull defined by its 5 control points.

Given a specific value of τ , the algorithm starts by dividing
each polyline between r̄i and r̄i+1, i = 0, . . . , n − 1, in a

ratio of τ : 1− τ to obtain n new points indicated by r̄
(1)
i .

Repeating the subdivision n times yields a single point

r̄
(n)
0 which can be shown to be the point on the curve

corresponding to τ . For a Bézier curve of degree n with
n+ 1 control points and τ = τ0, the above procedure can
be expressed as the following recursive formula:

r̄
(0)
i = r̄i i = 0, . . . , n

r̄
(j)
i = (1− τ0)r̄

(j−1)
i + τ0r̄

(j−1)
i+1 j = 1, . . . , n

i = 0, . . . , n− j
r̄
(n)
0 = r(τ0) (11)

The de Casteljau’s algorithm also provides a method for
subdividing a Bézier curve into two Bézier curves of the
same degree at point τ0, with the two sets of n+ 1 control
points for the pieces [0, τ0] and [τ0, 1] defined as

[0, τ0] : r̄
(0)
0 , r̄

(1)
0 , . . . , r̄

(n)
0

[τ0, 1] : r̄(0)n , r̄
(1)
(n−1), . . . , r̄

(n)
0 (12)

Figure (4) illustrates the application of the De Casteljau’s
algorithm for dividing a cubic Bezier curve into two
segments at different points.

Degree Elevation:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9413



Fig. 4. A cubic Bézier curve is divided into two Bézier
curves of the same order, at τ = 0.3, 0.5, 0.7, using
the de Casteljau’s algorithm.

The Degree Elevation algorithm is extremely useful for
applications involving two or more Bézier curves with
different degrees. It allows increasing the degree of a Bézier
curve , i.e. changing the basis, without changing its shape.
The Bernstein basis polynomials of degree n, Bi,n can be
expressed in terms of the Bernstein polynomials of degree
n+ 1:

Bi,n(τ) = (1− i

n+ 1
)Bi,n+1(τ)+

i+ 1

n+ 1
Bi+1,n+1

i = 0, 1, . . . , n (13)

More generally, Bi,n can be written in terms of basis
functions of degree n+ r as

Bi,n(τ) =

i+r∑
j=i

(
n
i

)(
r

j−i
)(

n+r
j

) Bj,n+r(τ) (14)

Using (13) and (14), we can obtain the corresponding set
of control points that converts a Bézier curve to a higher
degree curve. The following formula gives the new n + 2
control points for the case of increasing the degree by one:

r̄n+1
i =

i

n+ 1
r̄ni−1 + (1− i

n+ 1
)r̄ni i = 0, . . . , n+ 1 (15)

It can be implied from (15) that each polyline will exactly
contain one new control point. Figure (5) shows a cubic
Bézier curve expressed in terms of basis functions of degree
4, 6, and 15 with the new set of control points obtained
using (15).

4. TRAJECTORY GENERATION USING BÉZIER
CURVES

In this Section, we explain our approach to deal with the
semi-infinite constraints in (6) using Bézier parameteriza-
tion of trajectories.

The example we study below is a motion planning problem
for multiple drones, where collision-free trajectories are
required to guide the drones from their initial positions
to final positions. The problem consists of boundary con-
ditions, such as initial position, speed, and acceleration
of the drones as well as their desired final state. It also

Fig. 5. A cubic Bézier curve is expressed in terms of higher
degree basis functions, n = 4, 6, 15, using the degree
elevation algorithm.

includes other constraints, such as speed and acceleration
bounds and inter-vehicle collision avoidance, expressed in
terms of inequalities.

In the following, we adopt a simplified model for each of
the drones (quadrotors) given by a double integrator of
the form

ṗQ = vQ

v̇Q = aQ, (16)

where vQ = [vx vy vz]T ∈ R3 is the linear velocity and
aQ = [ax ay az]T ∈ R3 is the linear acceleration. If we
consider the flat output to be defined as

y = pQ (17)

then y(t) can be parameterized with a n-degree spatial
Bézier curve as

y(τ) =

n∑
k=0

ykBk,n(τ) (18)

where yk ∈ R3 are the control points and τ ∈ [0, 1] is
defined as

τ =
t

T
(19)

The linear speed, vQ, and linear acceleration, aQ, can also
be expressed as parametric Bézier curves of degree n − 1
and n − 2, respectively, by simply differentiating the flat
output y.

vQ(τ) =

n−1∑
k=0

vkBk,n(τ)

aQ(τ) =

n−2∑
k=0

akBk,n(τ) (20)

where the control points vk and ak are obtained as

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9414



vk =
n(yk+1 − yk)

T
k = 0, . . . , n− 1

ak =
n(n− 1)(yk+2 − 2yk+1 + yk)

T 2
k = 0, . . . , n− 2

(21)

Considering (18) and (20), the initial and final conditions
on the position, speed and, acceleration of the vehicle will
determine the control points y0, y1, y2 and yn−2, yn−1, yn.

The problem we consider includes inequality constraints
such as speed and acceleration bounds

vQ ≤ vQ(τ) ≤ v̄Q τ ∈ [0, 1]

aQ ≤ aQ(τ) ≤ āQ (22)

and inter-vehicle collision avoidance

∥∥∥p[i]
Q (τ)− p

[j]
Q (τ)

∥∥∥2
2
≥ R2 τ ∈ [0, 1] (23)

which must be satisfied for all τ ∈ [0, 1]. Similar constraints
to (23) can be added to enforce vehicle-obstacle collision
avoidance with R being the safe distance to be kept
between the vehicles and obstacles.

The above inequality constraints can be rewritten in terms
of Bézier curves using (18) and (20). In the following, we
present an efficient method for dealing with the infinite set
of constraints in (22) and (23).

4.1 Efficient Evaluation of Inequality Constraints

Here, we assume that all inequality constraints can be
expressed in terms of Bézier curves as

h(τ) =

nh∑
i=0

h̄iBi,nh
(τ) (24)

Considering the partition of unity property (9), h(τ) ≤ 0
can be converted into the following finite set of constraints
on the control points:

h̄i ≤ 0 for i = 0, . . . , nh (25)

The above set of constraints can be conservative due
to the existing gap between the control points and the
actual curve. As explained in the previous section, degree
elevation and de Casteljau’s algorithm set up different
ways of finding new control points that are closer to the
curve.

The degree elevation algorithm gives new control points
for the curve expressed in higher dimensional basis poly-
nomials, and the de Casteljau’s algorithm provides the
control points for different segments of the curve expressed
as bézier curves of the same degree. In both algorithms, the
control points approaches the curve as we keep repeating
the process.

Both approaches can be utilized to reduce the conser-
vatism in (25), by finding closer control points to the curve
without increasing the number of variables, yet, while the
former provides control points that are distributed along
h(τ), the latter allows generating more new control points
on a specific part of the curve. This can be extremely useful

when solving the problem online in a receding horizon
manner as excessive computations for remote horizon can
be avoided.

5. SIMULATION RESULTS

In this section, the efficacy of the method described above
is evaluated through two different examples. The model
and constraints in the two examples are as described in
Section 4, and the objective function is a measure of the
trajectories’ smoothness defined as

J =

Nv∑
j=0

∫ 1

0

∥∥∥∥∥dky[j](τ)

dτk

∥∥∥∥∥
2

dτ (26)

where Nv is the number of drones. The computation times
mentioned below are all obtained on a desktop computer
with 2.60 GHz i7-4510U CPU and 6.00 GB RAM.

In the first example, we consider two drones flying in
an environment with static and moving obstacles. The
goal is to generate smooth trajectories that guide the
drones to their desired final positions, while avoiding the
obstacles. Also, a minimum distance of 2m must be kept
between the two drones during the entire flight time. In
order to compensate for the uncertainties in the obstacles’
positions, the optimization problem (6) is solved in a
receding horizon manner taking into account the most
recent measurements of positions.

Figure (6) shows the trajectories generated at different
time instances. At t = 0 the whole trajectory, from the
drone’s initial position to its final position, is generated
using planar Bézier curve of degree 6. At t = 5.6s and
t = 6.8s, the trajectories are re-planned to avoid collision
with the new obstacles detected along the horizon. When
re-planning the trajectories, it is necessary to consider
the continuity conditions of the curve and its derivatives
to ensure that the two segments of the path are joined
smoothly.

The method described in section 4.1 is utilized for dealing
with the inequality constraints. With the new control
points obtained by the de Castejau’s algorithm, the tra-
jectories of the two drones are generated by solving an
optimization problem with a small number of variables
and constraints. The average computation time for solving
this problem is 146 ms, which is much faster than using
the GJK-based method with an average computation time
of 1547 ms, without compromising on the performance of
the trajectories.

In the second example, we consider generating collision-
free trajectories for five drones. The trajectories should
be generated such that the drones arrive at their final
positions at the same time, with the desired speed and
acceleration.

Figure (7) shows the trajectories for 5 drones generated
such that they reach their final points in minimum time
while avoiding inter-vehicle collisions. In this example the
trajectories are parameterized with spatial Bézier curve of
degree 8. Using the method described in this paper, the
computation time for solving this problem is 647 ms. This

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9415



(a) t = 0

(b) t = 5.6s

(c) t = 6.8s

Fig. 6. Trajectories for two drones re-planned at different
time instances to deal with the uncertain environment
and avoid collision with obstacles.

Fig. 7. Collision-free trajectories for 5 drones generated
with Bézier curves of degree 8.

method does not only guarantee constraint satisfaction
for the entire flight time but also provides a 10X faster
computation time compared to the time gridding method
with a sampling period of 1s.

6. CONCLUSIONS

In this paper we considered the problem of generating
collision-free trajectories for multiple drones using a re-
liable and efficient algorithm that can meet the timing
constraints of real-time applications. We parameterized
the trajectories using Bézier curves and exploited their
properties to obtain a small set of constraints on the
control points. In order to reduce the conservatism of the
constraints, we utilized the de Casteljau’s algorithm to find
additional control points without increasing the number
of optimization variables or using unnecessary high degree
basis functions. The obtained results demonstrate the abil-
ity of the proposed method to speed up the solution time
of generating and re-planning trajectories. Validating the
proposed approach with real experiments in a dynamic
environment is left for future work.

REFERENCES

Chen, X.D., Chen, L., Wang, Y., Xu, G., Yong, J.H., and
Paul, J.C. (2009). Computing the minimum distance
between two bézier curves. Journal of Computational
and Applied Mathematics, 229(1), 294–301.

Choe, R., Puig, J., Cichella, V., Xargay, E., and Hov-
akimyan, N. (2015). Trajectory generation using spatial
pythagorean hodograph bézier curves. In AIAA Guid-
ance, Navigation, and Control Conference, 0597.

Choi, J.w., Curry, R., and Elkaim, G. (2008). Path
planning based on bézier curve for autonomous ground
vehicles. In Advances in Electrical and Electron-
ics Engineering-IAENG Special Edition of the World
Congress on Engineering and Computer Science 2008,
158–166. IEEE.

Cichella, V., Kaminer, I., Walton, C., Hovakimyan, N., and
Pascoal, A. (2018). Bernstein approximation of optimal
control problems. arXiv preprint arXiv:1812.06132.

Goerzen, C., Kong, Z., and Mettler, B. (2010). A survey
of motion planning algorithms from the perspective of
autonomous uav guidance. Journal of Intelligent and
Robotic Systems, 57(1-4), 65.

LaValle, S.M. (2006). Planning algorithms.
Mellinger, D. and Kumar, V. (2011). Minimum snap

trajectory generation and control for quadrotors. In
2011 IEEE International Conference on Robotics and
Automation, 2520–2525. IEEE.

Mercy, T., Van Loock, W., and Pipeleers, G. (2016). Real-
time motion planning in the presence of moving ob-
stacles. In Control Conference (ECC), 2016 European,
1586–1591. IEEE.

Mercy, T., Van Parys, R., and Pipeleers, G. (2017). Spline-
based motion planning for autonomous guided vehicles
in a dynamic environment. IEEE Transactions on
Control Systems Technology.

Rigatos, G.G. (2015). Nonlinear control and filtering
using differential flatness approaches: applications to
electromechanical systems, volume 25. Springer.

Van Nieuwstadt, M.J. and Murray, R.M. (1998). Real-
time trajectory generation for differentially flat systems.
International Journal of Robust and Nonlinear Control:
IFAC-Affiliated Journal, 8(11), 995–1020.

Van Parys, R. and Pipeleers, G. (2017). Spline-based mo-
tion planning in an obstructed 3d environment. IFAC-
PapersOnLine, 50(1), 8668–8673.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9416


