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Abstract: Electrical Impedance Tomography (EIT) can be used to study the hydrodynamic
characteristics in multi-phase flows such as gas holdup in bubble columns, air-core in hydro-
cyclone, etc. In EIT, the main objective is to estimate the electrical properties (conductivity
distribution) of an object in a region of interest based on the surface voltage measurements.
The main challenge in such reconstruction (estimation of conductivity distribution) is the low
spatial resolution. In this paper, a sparse optimization approach for image reconstruction in EIT
is presented. The main idea presented in this article is based on considering the L1 norm on the
data term, which enhances the reconstruction of conductivity distributions with sharp changes
near phase boundaries. Further, this method is also robust to outliers in the data. The accuracy
of the proposed method is demonstrated with the help of two phantoms, and a comparison with
the existing methods is also presented.

Keywords: Parameter estimation, Electrical Impedance Tomography, Sparse optimization,
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1. INTRODUCTION

Tomography techniques are popular for visualizing the hy-
drodynamics of multi-phase flows in industrial processes.
In Electrical Impedance Tomography, the electrical prop-
erties at a region of interest are computed from the surface
measurements of electric potentials. These surface poten-
tials are obtained by the application of small currents (e.g.,
ten milli-Amperes) to a pair of electrodes that are placed
around the boundary. This procedure can be thought of
as introducing a perturbation to a set of electrodes and
procuring the data from the remaining successive pairs
of electrodes. Although this technique was initiated for
lung imaging (Borsic et al., 2010), it has gained impor-
tance in chemical processes for investigation of dispersion
characteristics in multi-phase flows (Vadlakonda and Man-
gadoddy, 2018) and air-core characteristics in hydrocy-
clones (Varanasi et al., 2019). With multiple advantages
such as being a non-invasive, low-cost, portable with im-
mediate response characteristics (Bera, 2018), Electrical
Resistance Tomography (which is the direct current analog
of EIT) can be considered as a prime technique on par with
its precedents such as Positron Emission Tomography,
Computed Tomography which may cause adverse effects
when used for longer periods.

The main challenge of reconstruction in EIT problem is
that the continuous conductivity distribution needs to be
recovered from a few voltage measurements at the bound-
ary (Borsic et al., 2010) which makes the problem severely
ill-posed. The classical back-projection algorithm (Santosa

and Vogelius, 1990) and its variants such as modified
sensitivity back projection (Kotre, 1994) are based on
small perturbation approximations. Several regularization
methods such as Tikhonov, Total Variation (TV) are used
to alleviate the ill-posed nature directly. The main idea
behind these methods is the inclusion of apriori informa-
tion.

The current paper uses sparse constraints to drive the opti-
mization of the regularized method to the desired solution.
Sparsity refers to the number of non-zero components in a
vector. Although the conductivity distribution may not be
sparse (i.e., containing a large number of zero values) in
chemical process applications, the gradient of conductivity
is sparse with abrupt changes at the phase boundaries.

For example, in a hydrocyclone, there would be a sharp
change in the conductivity at the boundary of the air-core.
Similarly, sudden changes in conductivity would occur at
the boundaries between the bubbles (gas phase) and the
liquid phase in a bubble column.

The L1 −L1 method (Borsic and Adler, 2012) uses the 1-
norm of the conductivity whereas the TV methods include
the 2-norm on the gradient as regularizing terms. The L1

method is known to provide sparse conductivity distribu-
tions, whereas the TV norm results in sparse conductivity
gradients. However, these methods use convex relaxations,
i.e., the 1-norm and the TV-norm respectively, instead of
the true 0-norm, which is defined as the number of non-
zero components of a vector.
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The 0-norm has been incorporated directly into the regu-
larization term in (Varanasi et al., 2019). Although this ap-
proach performs better than the previous methods, sharp
conductivity profiles were not achieved accurately. This
might be because considering L2 norm on the data fit term
makes the algorithm sensitive to outliers. To improve the
reconstruction of images with sharp/abrupt changes and
to make the algorithm more robust to outliers, a constraint
of L1 norm, is considered in the data fit in this paper. The
1-norm makes the optimization problem more challenging
and a primal-dual interior point method (Borsic and Adler,
2012), combined with sparse optimization, is used for the
solution.

The remainder of the paper is organized as follows. In
Section 2, the problem statement is presented, and the
mathematical framework to solve the reconstruction prob-
lem is detailed. Section 3 shows the application of the
proposed method on two case studies in multi-phase flows.
The results on normal, as well as data with outliers, are
then compared with existing algorithms in Section 4. Sec-
tion 5 provides the concluding remarks.

2. FORMULATION

2.1 Problem Statement

The governing equations of EIT are obtained using
Maxwell’s equations resulting a 2nd order partial differen-
tial equation ∇.(σ(ω)∇φ(ω)) = 0, involving conductivity
distribution (σ) and the electrical potential (φ) in the
region of interest (ω ∈ Ω) .

The forward problem in EIT is to solve the Maxwell’s equa-
tion to obtain the electric potential φ given the conductiv-
ity σ(ω) ∀ω ∈ Ω. In practice, the solution to the forward
problem is obtained using Finite Element Methods (FEM).
For a given conductivity distribution (σ) let Γσ denote
the function which maps the boundary surface voltage to
boundary surface current. The theoretical inverse problem
is to find σ given the map Γσ. Note that the knowledge of
all possible boundary distributions of voltage and current
pairs is required to formulate the map Γσ.

The numerical reconstruction problem is to compute the
σ from a finite set of boundary surface voltage measure-
ments. Let F (σ) represent the boundary voltages predicted
by solving the (PDE) e.g. using Finite Element Method
(FEM), given conductivity (σ). Let Vmeas ∈ Rn(n−3)
represent the measured voltages at the boundary with
n reprsents the number of electrodes considered in the
system, the general output least squares approach can be
written as

σ∗ = arg min
σ

1

2
‖Vmeas − F (σ)‖22

The least-squares formulation fails to provide good recon-
struction as the problem is severely ill-posed. Regulariza-
tion is commonly performed to make the problem well-
posed, and the objective function can be written as

σ∗ = arg min
σ

1

2
‖Vmeas − F (σ)‖22+λG(σ)

where i) G(σ) = ‖σ − σ0‖2 for quadratic regularization,
where σ0 is the reference conductivity ii) G(σ) = ‖σ−σ0‖1
for L1-norm regularization and iii) G(σ) = ‖∇σ‖2 for TV -
norm regularization where ∇σ represents the gradient of
the conductivity vector. Apart from these methods, L1-
norm constraint is also considered on the data-fit in (Borsic
and Adler, 2012), which makes the reconstruction robust
to outliers in the data. Unlike these methods wherein a
convex relaxation of sparsity constraint is considered, the
method described in (Varanasi et al., 2019) applies a
sparsity constraint directly into the optimization problem.

2.2 Methodology

The main objective of EIT reconstruction is to estimate
the conductivity vector given voltage-current measure-
ments on the boundary. In the current paper, the idea
of incorporating sparse constraint directly into the opti-
mization is considered. A 1-norm constraint on the data-fit
term is chosen to make the reconstruction more accurate in
the presence of sharp changes in conductivity distribution
and to make the algorithm robust to the outliers in the
data.

The objective function is considered to be

arg min
σ

n∑
i=1

|Vmeas,i − F (σ)i| subject to ‖∆σ‖0≤ s

where, n is the total number of measurements. Here, ∆σ
∆σ = Aσ where A is an upper bidiagonal matrix with
−1 on main diagonal, +1 on the upper diagonal and zeros
elsewhere. Therefore, the objective function is,

arg min
σ

n∑
i=1

|Vmeas,i − F (σ)i| subject to ‖Aσ‖0≤ s

Denoting Aσ = σ̂, the optimization problem can be
reformulated as,

arg min
σ,σ̂

n∑
i=1

|Vmeas,i − F (σ)i| s. t. σ̂ = Aσ and ‖σ̂‖0≤ s

which can then be converted into the unconstrained form

arg min
σ,σ̂,‖σ̂‖0≤s

n∑
i=1

|Vmeas,i − F (σ)i|+ λ‖σ̂ −Aσ‖22

This problem involves joint minimization w.r.t σ and σ̂ for
a fixed λ. Hence a two step optimization is performed in
which the objective function is minimized w.r.t σ in the
first step and in the second step, the objective function is
minimized w.r.t σ̂ along with sparsity constraint.

Expressing mathematically, the optimization problem in
step-1 (called as primal (P )) with fixed σ̂ is

(P ) arg min
σ

n∑
i=1

|Vmeas,i − F (σ)i|+ λ‖σ̂ −Aσ‖22

The expression can be modified for each i as,

|Vmeas,i − F (σ)i|= max
xi;‖xi‖≤1

xi (Vmeas,i − F (σ)i)
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Therefore, the objective function may be written as,

(1)min
σ

{
max
x

xT (Vmeas − F (σ))

+ λ‖σ̂ −Aσ‖22
}
,with ‖xi‖≤ 1, i = 1, 2, . . . , n

We now use the ideas of Primal-Dual Interior point tech-
nique presented in (Borsic and Adler, 2012). The details
are given here for easy readability. Interchanging the min
and max results into,

(2)max
x

{
min
σ

xT (Vmeas − F (σ))

+ λ‖σ̂ −Aσ‖22
}
,with ‖xi‖≤ 1, i = 1, 2, . . . , n

Computing the derivatives w.r.t primal variables and
equating to zero results into,

JT (σ)x+ λAT (σ̂ −Aσ) = 0

where J(σ) is the Jacobian matrix of the forward model
i.e., F (σ). This results in the following equivalent opti-
mization (called as dual problem (D))

(D) max
x

{
xT (Vmeas − F (σ)) + λ‖σ̂ −Aσ‖22

}
with ‖xi‖≤ 1, i = 1, 2, . . . , n

JT (σ)x+ λAT (σ̂ −Aσ) = 0

Instead of minimizing the primal or maximizing the dual,
a complimentary condition obtained from the primal-dual
gap is enforced in the optimization (Andersen et al., 2000).

GPD =

n∑
i=1

|Vmeas,i − F (σ)i|−xi(Vmeas,i − F (σ)i)

The primal-dual gap i.e., GPD is zero if Vmeas,i − F (σ)i =
0 ∀i or

(Vmeas,i − F (σ)i)− xi (|Vmeas,i − F (σ)i|) = 0

‖xi‖≤ 1, i = 1, 2, . . . , n (3)

JT (σ)x+ λAT (σ̂ −Aσ) = 0

The resulting equations in Eq. (3) are to be solved
jointly on σ and x using for e.g. the Newton method.
In order to estimate the derivatives, the absolute value
in condition-1 of Eq. (3) needs to be smoothed. The
smoothing is obtained by replacing the absolute value

with

√
(Vmeas − F (σ))

2
+ β with β > 0. The smoothed

feasibility condition is known as centering condition which
leads to a smooth pair of optimization problems (Ander-
sen et al., 2000; Borsic and Adler, 2012). Therefore, the
objective function is modified as

(Vmeas,i − F (σ)i)− xi
(√

(Vmeas − F (σ))
2

+ β

)
= 0 (4)

‖xi‖≤ 1, i = 1, 2, . . . , n (5)

JT (σ)x+ λAT (σ̂ −Aσ) = 0 (6)

Computing the partial derivatives w.r.t the variables, the
final system of equations in the following form is obtained
as,

(7)

[
−(I −XE−1F )J(σ) −E

−2λATA JT (σ)

] [
δσ
δx

]
= −

[
f − Ex

JT (σ)x+ λAT (σ̂ −Aσ)

]
with X = diag(xi), fi = Vmeas,i − F (σ)i, F = diag (fi),

E = diag
(√

f 2
i + β

)
. The above system of equations can

be solved iteratively by computing the updates for δσ and
δx as

δσ = −
[
JTE−1(−I +XE−1F )J − 2λATA

]−1[
JTE−1f + 2λAT (σ̂ −Aσ)

]
δx = E−1f − x− E−1(I −XE−1F )Jδσ

(8)

A traditional line search procedure can be applied while
updating the primal variable at kth iteration as

σ(k+1) = σ(k) + λσδσ
(k) (9)

where λσ is the computed step length. The dual variable
can be updated as

x(k+1) = x(k) + min(1, φ∗)δx(k) (10)

where φ∗ is a scalar value such that

φ∗ = sup
{
φ : |x(k)i + φδx

(k)
i |≤ 1, i = 1, 2, . . . , n

}
Once the conductivity vector i.e., σ is estimated using the
aforementioned method, the estimation of σ̂ for a fixed
sigma is performed in step-2. Therefore, the optimization
in step-2 is

arg min
σ̂

n∑
i =1

|Vmeas,i − F (σ)i|

+ λ‖σ̂ −Aσ‖22 subject to ‖σ̂‖0 ≤ s

Since the first term is independent of σ̂, this minimization
is exactly equal to

min
‖σ̂‖0≤s

‖σ̂ −Aσ‖22 (11)

It is easy to see that the solution σ̂ is the best s-sparse
approximation of Aσ, i.e., the vector containing the s-
maximum absolute entries of Aσ at the same locations
and zeros elsewhere.

The overall algorithm in the case when nm = 1 is as
follows. Firstly, an initial guess of conductivity vector (σ)
and conductivity gradient vector (σ̂) is provided in step-1
based on TV-norm regularization and conductivity vector
(along with dual variable) is updated using the Newton
method as explained in Eq. (9) (as well as Eq. (10)). The
difference in the conductivity vector is estimated using
the updated conductivity vector. These steps are repeated
until the error between two iterations is in tolerance range.
The overall steps are depicted in Algorithm 1.
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Algorithm 1 Algorithm for a fixed value of regularization
parameter (λ)

• Inputs: Experimental/simulated data (Vmeas), mag-
nitude of current injected and the pattern of injection,
termination criterion..
• Output: Conductivity vector.
• Initialize σ0, l = 0 and define error2 = ‖σ̂kl+1 − σ̂kl ‖22

and error1 = ‖σk+1
l − σkl ‖22.

while error2 > tolerance, do
* Estimate σ̂kl by solving Eq. (11) with σ = σkl

while error1 > tolerance, set k = 0 do
- Compute σk+1

l and xk+1
l using Eqs. (9)

and (10)
k + 1←− k
end while

l + 1←− l
end while
return conductivity vector σ

In the overall algorithm depicted in Algorithm 1, error1
and error2 are the errors between two consecutive itera-
tions of σkl and σ̂kl respectively.

2.3 Selection of Regularization parameter

Following the same approach for parameter estimation as
in (Ramsay et al., 2007; Varanasi and Jampana, 2018), the
regularization parameter (λ) is varied, starting from a low
value to a very high value. For every λ, the optimization
is performed, and the solution is considered as the initial
guess for the next iteration. The iterations are repeated
until a stopping criterion is met, i.e., the root mean square
error (RMSE) value (defined in Eq. (12)) is in tolerance
range, or the data fit error starts increasing after hitting
a minimum value between two consecutive λ values.

3. CASE STUDIES

An EIT system with sixteen electrodes arranged on a
plane with equidistant spaces and adjacent stimulation
pattern, i.e., current is injected between adjacent pairs
of electrodes and voltage is measured among all other
successive pairs of electrodes is considered. The forward
model (PDE) considered in this study was a finite element
model with a circular pattern that is implemented in
EIDORS software (Adler and Lionheart, 2006).

The proposed method is tested on two case studies, as
shown in Fig. 1, and root mean square error (RMSE) is
used to evaluate the performance.

RMSE =

√√√√ 1

n

n∑
k=1

(Vdata,k − Vmodel,k)2 (12)

Here, n denotes the length of the measurement vector.
Vdata,k and Vmodel,k represent the kth element of the actual
and estimated potential with the identified conductivity
vector respectively. The value of λ (the regularization
parameter) is steadily increased (in terms of order of 10
starting with 1× 10−4) and for every λ, the optimization
as defined in Algorithm 1 is performed.
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(a) Case-1 : Air core in hydrocyclone

-0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.25

0.5 

0.75

1   

1.25

1.5 

1.75

(b) Case-2 : Bubbles in liquid

Fig. 1. Images of 2D phantoms for generating simulated
data

The estimated conductivity vector is clustered into the
number of objects considered to compute the absolute
conductivity of the object. As each cluster signifies an
object, the absolute conductivity of the object in a speci-
fied cluster is considered to be the average of conductivity
values in that specified cluster.

3.1 Reconstruction results

Case-1: A phantom model of air-core in hydrocyclone,
as shown in Fig. 1(a) is simulated to obtain the voltage
data. The radius of the air core is modeled to be 0.5 m,
and the conductivity of air is 0.1 S/m. The surrounding
medium around the air core is water with a conductivity
value of 1 S/m.

From the reconstructed image in Fig. 2, it can be con-
cluded that the proposed method has provided sharp con-
ductivity profiles by which we can have a reliable estimate
of the air core size in an operating hydrocyclone. The
air core size can be inferred from the radial conductivity
profile of the hydrocyclone. The absolute conductivity of
the object using the proposed method is 0.0718 S/m, and
an RMSE value of 0.0034 is obtained.

Case-2: The other case study considered is bubbles
in a circular pipe system, as shown in Fig. 1(b). The
conductivity of the continuous medium and the dispersion
phase (bubbles) are considered as 1 S/m and 0.1 S/m,
respectively. The reconstructed image from the voltage
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Fig. 2. Reconstructed image using the proposed method
for Case-1

data is shown in the Fig. 3 and an estimated absolute
conductivity of the bubble is obtained as 0.1818 S/m, and
an RMSE value of 0.000819 is obtained.

It can be further noted from Fig. 3, the proposed algorithm
has identified all the bubbles and also, the edge disconti-
nuities of the bubbles can be observed clearly.

-0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.25

0.5 

0.75

1   

1.25

1.5 

1.75

Fig. 3. Reconstructed image using the proposed method
for Case-2

3.2 Reconstruction results with Outliers in data

To further demonstrate the accuracy of the proposed
method in reconstruction with outliers in data, noise
(Gaussian), is added to 10% of electrodes, and Monte-
Carlo simulations are performed. The mean and the stan-
dard deviation of the RMSE values for Case-2 is esti-
mated to be 0.0444 and 0.0165, respectively, and the
reconstructed image with the mean conductivity vector is
reported in Fig. 4.

From Fig. 4, it can be concluded that the proposed method
can detect the objects even with outliers in the data.
However, the phase boundaries are not as sharp as in the
zero noise case.

4. COMPARISON

In this section, a comparison of the proposed method with
the L1 − L1 method as explained in (Borsic and Adler,
2012) is presented. The reconstructed images using L1−L1

method for Case − 1 and Case − 2 are shown in Figs. 5
and 6 respectively.
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Fig. 4. Reconstructed image with mean conductivity using
the proposed method for Case-2 with outliers in data
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Fig. 5. Reconstructed image for Case − 1 with L1 − L1

method
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Fig. 6. Reconstructed image for Case − 2 with L1 − L1

method

The absolute conductivities of objects is estimated to
be 0.3009 S/m and 0.3977 S/m and RMSE values of
0.0151 and 0.2394 are obtained for Case − 1 and Case-2
respectively. From Figs. 2, 3, 5 and 6, it can be concluded
that the proposed method is able to reconstruct the images
with relatively high accuracy.

The L2-sparse (Varanasi et al., 2019) method uses the 2-
norm for the data fit term instead of the 1-norm in the
objective function while including the sparsity constraint
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similar to the present method. A comparison was also
made with this method. However, the results were very
similar and, therefore, are not displayed again.

4.1 Outliers in data case study

A comparative study for Case − 2 with outliers in the
data with L1 − L1 and L2-sparse methods is also per-
formed. The mean and standard deviation of the RMSE
values for Case − 2 with L1 − L1 method is estimated
to be 0.2806 and 0.0413 respectively whereas with the
L2-sparse method, these values were 0.0554 and 0.1494.
The reconstructed image with the mean of the estimated
conductivity with L1 − L1 and L2-sparse are reported in
Figs. 7 and 8 respectively.
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Fig. 7. Reconstructed image using L1 − L1 method with
outliers in data
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Fig. 8. Reconstructed image using L2-sparse method with
outliers in data

From Figs. 4, 7 and 8, it can be noted that the proposed
method is able to detect the objects more accurately even
in the presence of outliers in the data, and the RMSE
values are also smaller compared to the existing methods.

5. CONCLUSIONS

In this paper, an L1−sparse image reconstruction method
for Electrical Impedance Tomography from the measured
current-voltage data is described. The method considers an
L1− norm on the data fit term along with a direct sparsity

constraint on the gradient of the conductivity distribution.
Simulations on phantoms of air core in hydrocyclone and
bubbles in liquid were reported, and it was observed that
the proposed method results in more accurate conduc-
tivity profiles compared to an existing technique. The
performance of the method is also tested when some of
the measurements are corrupted by noise. Again, it was
observed that the proposed method resulted in a better
reconstruction of the conductivity distribution.

6. ACKNOWLEDGEMENTS

This research has been pursued with the support of the
Department of Science and Technology (India) under the
project CRG/2018/004892. We are incredibly thankful to
DST for support.

REFERENCES

Adler, A. and Lionheart, W.R. (2006). Uses and abuses of
eidors: an extensible software base for EIT. Physiological
measurement, 27(5), S25.

Andersen, K.D., Christiansen, E., Conn, A.R., and Over-
ton, M.L. (2000). An efficient primal-dual interior-point
method for minimizing a sum of euclidean norms. SIAM
Journal on Scientific Computing, 22(1), 243–262.

Bera, T.K. (2018). Applications of electrical impedance
tomography (eit): A short review. In IOP Conference
Series: Materials Science and Engineering, volume 331,
012004. IOP Publishing.

Borsic, A. and Adler, A. (2012). A primal–dual interior-
point framework for using the l1 or l2 norm on the data
and regularization terms of inverse problems. Inverse
Problems, 28(9), 095011.

Borsic, A., Graham, B.M., Adler, A., and Lionheart, W.R.
(2010). In vivo impedance imaging with total variation
regularization. IEEE transactions on medical imaging,
29(1), 44–54.

Kotre, C. (1994). Eit image reconstruction using sen-
sitivity weighted filtered backprojection. Physiological
measurement, 15(2A), A125.

Ramsay, J.O., Hooker, G., Campbell, D., and Cao, J.
(2007). Parameter estimation for differential equations:
a generalized smoothing approach. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
69(5), 741–796.

Santosa, F. and Vogelius, M. (1990). A backprojection
algorithm for electrical impedance imaging. SIAM
Journal on Applied Mathematics, 50(1), 216–243.

Vadlakonda, B. and Mangadoddy, N. (2018). Hydrody-
namic study of three-phase flow in column flotation us-
ing electrical resistance tomography coupled with pres-
sure transducers. Separation and Purification Technol-
ogy, 203, 274–288.

Varanasi, S.K. and Jampana, P. (2018). Identification of
parsimonious continuous time LTI models with applica-
tions. Journal of Process Control, 69, 128–137.

Varanasi, S.K., Manchikatla, C., Polisetty, V.G., and Jam-
pana, P. (2019). Sparse optimization for image recon-
struction in electrical impedance tomography. IFAC-
PapersOnLine, 52(1), 34–39.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

374


