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Abstract:
Data science is emerging as a multidisciplinary field with tremendous recent development in
theoretical foundations and expanded applications in both science and engineering. Engineering
applications include industrial data analytics, autonomous systems, energy analytics, envi-
ronmental applications, economic data modeling, image sequence modeling, and other high
dimensional time-series data analytics. This paper is concerned with the integration of data
science with dynamic systems, monitoring and control. The development of machine learning is
reviewed in both a neural-mimic learning route and a learning control route, which deals with
intrinsically uncertain dynamic systems. The paper then reviews the interaction of data with
process manufacturing systems modeling and control, involving both data and first principles
models with varying proportions. Problems include data reconciliation, state and disturbance
estimation, system identification, process monitoring, and inferential property estimation. For
time series data in process manufacturing systems, we present latent dynamic variable modeling
methods to extract the principal dynamics in a low dimensional subspace of the data. The
approaches effectively distill latent dynamic features from the data for easy interpretation,
prediction, and visualization. Case studies are presented to illustrate how these latent dynamic
analytics extract important features for process interpretation, troubleshooting, and monitoring.

Keywords: data science, machine learning, process data analytics, first principles vs. data,
system data modeling

1. INTRODUCTION

Data science is emerging as a multidisciplinary field with
tremendous recent development in theoretical foundations
and expanded applications in science and engineering.
Many universities and research institutions have estab-
lished institutes, departments, and even schools in data
sciences (Haas et al. (2019); Rappa (2019)). Harvard Uni-
versity has launched a new journal called Harvard Data
Science Review with an inauguration editorial by Meng
(2019), parallel to the Harvard Business Review. As stated
in the editorial, the central mission of the journal is to help
define and shape what data science is or should be.

With the development of internet of things, smart and
wireless sensors, wireless communications, mobile devices,
smart devices, e-commerce, and smart manufacturing, the
amount of data collected and stored are growing exponen-
tially. On the other hand, along with the ever increasing
power of data analytics, many fields of science, engineer-
ing, and industries, including chemicals, petrochemicals,
energy, power grids, and pharmaceuticals, have turned
their attention to deriving systematic understanding and
insight from various sources of data. The scientific chal-
lenges brought by the rich data, in turn have propelled
tremendous development in data analytics, or broadly,
data science. Statistics, for instance, is embracing the chal-

lenges to revitalize the century-old discipline, as expressed
by Hastie et al. (Hastie et al. (2009)), The field of Statistics
is constantly challenged by the problems that science and
industry brings to its door. . . . With the advent of comput-
ers and the information age, statistical problems have ex-
ploded both in size and complexity. The tasks of extracting
important patterns and trends, and understanding ”what
the data says” have led to a revolution in the statistical
sciences.

Owing to advanced data acquisition and instrumentation
in engineering systems, data from process operations and
manufacturing are often high dimensional with high fre-
quency features, multiple sampling rates, and a mix of
continuous and categorical quantities. Since there is a
plethora of existing principles in engineering, the first
challenge in applying data science to engineering systems
is how to incorporate mechanistic models with data ana-
lytics. While data analytics and machine learning provide
amazing ability to represent complex relationships embed-
ded in the data, engineering systems such as industrial
processes and equipment are designed with well-defined
purposes and operated under designed conditions. In these
cases mechanistic or first principles models are available
and dependable. However, for emerging circumstances that
deviate from the design conditions, historical and real

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 11483



time data become valuable assets for troubleshooting and
decision-making in real time operations.

While data analytics and machine learning tools have
enjoyed fast development in the last couple of decades,
model interpretability has become one of the desired fea-
tures since human decision-makers must understand and
feel convinced about what the machine learning models
suggest. This is because the decision-making and operation
personnel have to shoulder the responsibility in the case
that the models produce erroneous suggestions. When the
data-driven decision process fails, the human decision-
maker must be the fallback.

Automation and control systems have always depended
on measurement data for estimation, control, and opti-
mization. This dependance is likely much enhanced with
the new development of Industry 4.0. Therefore, this pa-
per focuses on the connection between data and process
systems engineering, in particular, with regard to model-
ing, prediction, control and monitoring. We consider the
emerging field of data science as a promising source of
new tools or instruments to help engineers improve and
optimize the operation and control of engineering systems.
Specialized analytics are expected to integrate new data
science methods with the established framework of systems
and control principles.

2. LEARNING AS DEVELOPED IN NEURAL
NETWORKS AND CONTROL

Representative milestones in artificial neural networks
are often recognized for the recent breakthroughs in the
machine learning and data science field. These milestones
include,

• Hebbian learning in Hebb and Hebb (1949)
• The perceptron by Rosenblatt (1958)
• The backpropagation algorithm originated from Kel-

ley (1960)
• Minsky and Papert (1969) recognize that the percep-

tron is incapable of learning XOR
• Backpropagation through multi-layer neural networks

by Werbos (1974)
• Learning in deep neural networks by Hinton and

Salakhutdinov (2006)

On the other hand, research efforts along the line of learn-
ing control or reinforcement learning control have been
developed in parallel. The work by Kelley (1960) in gradi-
ent theory of optimal flight paths, which is recognized as
one of the earliest appearance of backpropagation learning,
is indeed an optimal control problem. The following list
of literature summarizes the efforts in learning for the
purpose of control.

• Gradient method of backpropagation in Kelley (1960)
• Dynamic programming and policy iteration by Howard

(1960), which applies dynamic programming Bellman
(1957)
• Reinforcement learning control by Fu (1970), which

clearly states that learning is for the case of incom-
plete knowledge
• Reinforcement learning by trial-and-error by Barto

and Sutton (1982)
• The Q-learning by Watkins (1989)

• The backgammon game, applying reinforcement learn-
ing by Tesauro (1992)

• AlphaGo, applying deep reinforcement learning by
Silver et al. (2016)

While the success of AlphaGo shocked the world in many
ways by beating the world champion of Go with an
artificial-intelligence program, it is critical to think about
what is special about the game of Go with the perspective
of real world engineering problems. The game of Go
possesses the following characteristics.

• The model is perfectly known, i.e., white box
• Disturbances i.e., the opponent’s moves, are 100%

observed and measured
• Rules are perfectly clear and time-invariant
• The objective function is clear and time-invariant
• Risk tolerance, i.e., consequences in losing a game are

just losing a game.

However, these characteristics do not exist in real engi-
neering control and optimization problems, as illustrated
in Qin and Chiang (2019). For example, consequences of
making a bad decision in engineering systems can trig-
ger serious economic loss and even catastrophic incidents.
Therefore, significant effort is needed to translate the
success of AlphaGo to engineering systems control and
optimization.

Machine learning today focuses on partial intelligence such
as self-driving cars, image analysis and recognition, natural
language processing, and Industry 4.0 problems for smart
manufacturing. A fundamental question is how to derive
intelligence from messy, real world data. It is worth noting
that many successful applications do not use deep neural
nets, but they benefit from employing new tools from the
broad field of statistical learning and data science.

3. DATA AND MODELS IN PROCESS SYSTEMS
ENGINEERING

3.1 A brief history of data in PSE

The process systems engineering (PSE) has been domi-
nated by model based control, estimation, and optimiza-
tion strategies with the adoption of computers for over five
decades. The successes in industrial process operation and
manufacturing have reached nearly all process industries
including chemicals, petroleum, refining, pharmaceutical,
semiconductor manufacturing, power systems, pulp and
paper, iron and steel, and energy production and supplies.
However, since the very beginning of computer based opti-
mization and control, researchers have recognized the need
to rely on accurate plant data to make the optimization
and control algorithms work in real time. Therefore, the
use of data in PSE goes back for about six decades, as
shown in the following list.

(1) Data reconciliation first studied by Kuehn and David-
son (1961); Stanley and Mah (1977)

(2) State and disturbance estimation using Kalman and
particle filtering (e.g., Kalman and Bucy (1961); Aru-
lampalam et al. (2002); Allan and Rawlings (2019))

(3) Process system identification in Otomo et al. (1972);
Eykhoff (1974); Richalet et al. (1978)
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(4) Inferential sensors for difficult to measure properties
in McAuley and MacGregor (1991); Tham et al.
(1991); Qin and McAvoy (1992)

(5) Process and control performance monitoring in Harris
(1989); Piovoso et al. (1992); Nomikos and MacGre-
gor (1994)

The above list of methods are organized in the order of
increasing reliance on data and decreasing reliance on
models. The task of data reconciliation by Kuehn and
Davidson (1961) assumes the models are accurate and
data are erroneous if they do not agree. Methods in state
and disturbance estimation recognize that plant models
are subject to disturbances and uncertainty, and therefore
are necessarily incomplete. First principles models are
combined with disturbance models that are estimated or
learned from data. In system identification the models are
estimated completely from data, but the data must be
collected from designed experiments. It is worth noting
that Otomo et al. (1972); Åström (1976) were among
the first to apply system identification to real world
applications.

Inferential sensors have been a proven application of neural
nets and multivariate statistics since 1990s, which are
estimated from historical operation data without the need
to do designed experiments. Finally, process monitoring
and control performance monitoring rely totally on data
based models to monitor the health of the processes, con-
trol systems, and key performance indices of manufactur-
ing systems. These applications reach beyond the process
manufacturing industries.

If one pushes towards the model-based extreme, it would
be dynamic programming applications. On the other hand,
if one pushes towards the data-driven extreme, it would
be reinforcement learning. It is interesting to note that
both approaches try to achieve the optimal performance
via totally different approaches. The approximate dynamic
programming for optimal learning control is one evidence
of the shared optimal goals with different approaches.

In chemical engineering, chemistry, biology, and materials
science, data-driven methods have become popular for
catalyst design, materials design and property predictions,
which aims at discovering and designing new materials
and formulations with desired properties (Venkatasubra-
manian (2019)). These methods are hopeful to result in
inverse design informatics. They assume massive, high
quality data are easy to obtain. Often a neural net repre-
sentation of the data is realized rather than new principles.
Nevertheless, these neural net representation models are
useful to accelerate the discovery process for new materials
design.

3.2 Necessary attributes for industrial adoptions

Although deep learning is successful in applications such
as image processing, it needs to meet certain criteria in
order for process industries to adopt. The following are
some of the necessary attributes for sustained industrial
adoptions, as stated in Qin and Chiang (2019).

• Working compatibly with first principles models or
process knowledge as they reflect the laws of physics
and chemistry;

• Dealing effectively with uncertainties that are usually
time varying; and

• Generating interpretable solutions for the decision-
makers.

Since human interventions will always be necessary in the
case that decisions based on machine learning fail to work,
interpretable solutions are a necessary requirement. The
tragic case of the Boeing 737 Max 800 is one that failed to
inform the human of the MCAS system’s actions, which
has led to disasters and tremendous losses.

In many studies results from machine learning can produce
higher accuracy predictions than those produced by first
principles models. However, people trust first principles
models not because they are always more accurate, but
because they are interpretable. When unexpected situa-
tions happen, they can deviate from existing models. In
such cases data provide situational knowledge of opera-
tions, which can be transformed into real time decisions
with proper data analytics. Therefore, industrial systems
engineering might see a paradigm shift towards a close
interplay between models and data, where models are used
for expected situations and data for unexpected situations.

The essence of data science for systems engineering might
be summarized as follows.

• Prediction: to predict critical variables from others
using predictive analytics;

• Interpretation: to extract features or new knowledge
from data to help visualization and diagnostics; and

• Decision-making.

Industrial systems data require specialized analytics com-
bined with domain knowledge to achieve maximum ben-
efits. While deep learning is specially effective for many
applications such as image analysis, interpretable machine
learning are inevitable for engineering applications.

Data from real time process control and operations are
most typically high dimensional time series with com-
plex dynamics and uncertainties. The dynamic contents
of the data are useful for prediction, feature analysis,
and interpretation. Given that the large dimensional time
series data are usually cross-correlated and auto-correlated
over time, it is necessary to develop dynamic dimensional
reduction techniques or latent variable methods to focus
on the modeling of dynamics in the latent subspace. In
the next section we present methods in latent dynamics
modeling and illustrate their use in process monitoring and
troubleshooting from real time operational data. These
methods integrate dynamic system theory with data an-
alytics for operational data rather than designed system
identification data, which are useful for troubleshooting
and process monitoring purposes (Dong and Qin (2020)).

4. DYNAMIC DATA ANALYTICS AND
MONITORING

To properly deal with dynamics in data from engineering
systems, we present a framework of dynamic latent vari-
able (DLV) methods that include supervised DLV methods
and unsupervised DLV methods. Unsupervised DLVs ex-
plore dynamic variations in X only. Supervised DLVs aim
to interpret and predict the variations in Y based on the
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latent space information in X. Due to page limit, we only
illustrate the unsupervised DLV modeling in this paper.
For the supervised case we refer to the work in Dong and
Qin (2015, 2018d).

Comparing to other existing unsupervised latent variable
methods on high-dimensional time series, the recent de-
velopment in latent dynamics modeling has the following
advantages.

• Dimension reduction: the number of DLVs required
to exhaust all the dynamics is usually smaller than
the number of original variables.
• Descending order of predictability: the DLVs are

extracted in descending order of predictability (or
dynamics).
• Explicit modeling of the dynamics: auto-regressive

models are built to explicitly represent the dynamics
in the DLVs.

These advantages allow for easy interpretation, visualiza-
tion and prediction. Next, we will explain more details
about the unsupervised DLV methods.

Given a time series data matrix

X = [x 1 x 2 · · · xN+s]
T ∈ <(N+s)×M

we wish to extract a dynamic latent variable from them
such that its current value can be best predicted from the
past. Let

Xw = t ∈ <N+s

denote the latent scores for all observations and tk = xT
kw

denote the latent variable at time k. The latent variable
is assumed to have the following auto-regressive (AR)
dynamics,

tk = β1tk−1 + · · ·+ βstk−s + rs
To build a general auto-regressive moving average (ARMA)
model, a high order AR model can be built first followed
by a model compaction step (Dong et al. (2020)). The
prediction from the dynamic latent model is

t̂k = β1tk−1 + · · ·+ βstk−s

= xT
k−1wβ1 + · · ·+ xT

k−swβs (1)

=
[
xT
k−1 · · · xT

k−s

]
(β ⊗w)

where β = [β1 β2 · · · βs]
T .

We formulate the following sequence of data matrices and
the corresponding latent score vectors,

Xi = [x i x i+1 · · · xN+i−1]T<N×M

ti = Xiw for i = 1, 2, · · · , s+ 1
(2)

Denoting
Zs = [Xs Xs−1 · · · X1]

the predicted score vector for ts+1 is expressed as follows
based on (1),

t̂s+1 = Zs(β ⊗w) (3)

The objective of the dynamic inner PCA (DiPCA) al-
gorithm by Dong and Qin (2018c) is to maximize the
covariance between the extracted data and the prediction,
that is

max
w,β

tTs+1t̂s+1

subject to ‖w‖ = 1, ‖β‖ = 1. Subsequently, Dong and Qin
(2018b) proposed a dynamic inner canonical correlation

analysis (DiCCA) algorithm that maximizes the canonical
correlation as follows.

max
w,β

tTs+1t̂s+1

‖tTs+1‖‖t̂s+1‖
or

max
w,β

tTs+1t̂s+1 (4)

subject to ‖ts+1‖2 = 1, ‖t̂s+1‖2 = 1. Note that the norm
constraints do not affect the optimal solution since they
do not affect the objective.

The maximization problem in (4) can be solved by using
Lagrange multipliers, which leads to an iterative solution
that involve a generalized eigenvector problem. Efficient
implementation algorithms via singular value decomposi-
tion (SVD) have been proposed to solve the optimization
problem in (4) by Dong et al. (2020).

While DiPCA maximizes the covariance between the la-
tent variable and its prediction, DiCCA maximizes the
correlation between the latent variable and its prediction,
which cares nothing about the magnitude of the extracted
latent variable. To make the magnitude of the extracted
latent variable relevant, Zhu et al. (2020) modified the
DiCCA objective by replacing the constraint ‖ts+1‖2 = 1
with ‖w‖2 = 1 to come up with the latent variable regres-
sion algorithm.

The DiCCA method tends to be more efficient in extract-
ing the dynamics, but it requires the number of samples
to be greater than the number of variables in solving the
generalized eigenvector problem. On the other hand, the
DiPCA algorithm works when the number of samples is
less than the number of variables. Therefore, both methods
have their advantages.

After the weight vector w is solved, the latent score vector
t = Xw and X is deflated as

X := X− tpT (5)

where the loading vector

p = XT t/tT t (6)

The deflated matrix X is then used to derive the next
dynamic latent dimension.

While the extracted dynamic latent variables are conve-
nient for visualization and interpretations, their prediction
power can be used to form predictive process monitoring to
shrink the normal variations down to the prediction errors
as the normal uncertainty. Dong and Qin (2020) proposed
several process monitoring schemes using dynamic latent
variable models including DiPCA and DiCCA. The predic-
tions of the latent variables are the conditional expecta-
tion of future observations, around which the uncertainty
bound is defined by the prediction errors, rather than the
entire variability of the latent variables. The true uncer-
tainty in the data is composed of the dynamic prediction
errors in the DLVs and static residuals that cannot be
predicted. The proposed monitoring schemes in Dong and
Qin (2020) are based on one-step ahead and multiple-
steps ahead predictions. When fault samples are detected,
multi-step predictions are made to avoid using faulty data
samples for predictions.
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5. FEATURE EXTRACTION AND MONITORING
CASE STUDIES

In this section, the modeling, visualization, interpretation
and diagnosis based on one of the dynamic latent variable
method, DiCCA, are demonstrated on an extensively stud-
ied plant-wide oscillation dataset from an industrial plant
of Eastman Chemical Company. The dataset contains a
total of 8640 samples and 60 variables, with 20 seconds
sampling frequency. Fig. 1 shows the process diagram.

Fig. 1. Process diagram of the plant-wide oscillation
dataset

5.1 Extracting features of plant-wide oscillations

DiCCA modeling method is performed on 18 variables:
LC1.PV, LC1.OP, FC1.SP, FC1.PV, FC2.SP, FC2.PV,
TI4.PV, TC1.PV, TC1.OP, FC5.OP, FC5.PV, LC2.PV,
LC2.OP, FC8.SP, FC8.PV, TC2.OP, TI8.PV, FI3.PV. By
applying DiCCA method to the 18 variables, we obtained
three leading DLVs with clear oscillatory patterns. The
plots of the 18 variables and the three leading DLVs are
shown in Fig. 2. For the ease of visualization, only the first
1000 samples of the DLVs are plotted.

A closer examination of Fig. 2 shows that the first two
DLVs only contain low frequency oscillations with a period
of 340 samples, while the third DLV contains not only the
low frequency, but also a high frequency oscillation with
a period of 18 samples. The low frequency oscillation has
been widely studied in literature Thornhill et al. (2003);
Yuan and Qin (2014), and the root cause was identified
as LC2.OP and LC2.PV. However, the high frequency
oscillation has only been recently discovered by DiCCA
method, and root cause was identified as PC2.OP and
PC2.PV Dong and Qin (2018a).

The two oscillations with different frequencies can also
be visualized on the 3D scatter plot of the first three
DLVs as shown in Fig. 3, where the first 500 samples are
plotted. The big ellipse suggests that the there is a low
frequency oscillatory pattern shared by all three DLVs,
and the higher frequency oscillations along the big ellipse
suggest that there is a high frequency oscillatory pattern
in the third DLV.

5.2 Predictive process monitoring via DiCCA

Simulated data from the Tennessee Eastman challenge
process by Downs and Vogel (1993) that are generated
by Chiang et al. (2001) are used to illustrate the process
monitoring based on DiCCA models. The motivation is
to illustrate the use of the predictions of the dynamic
latent variables to shrink the uncertainties for process
monitoring. Dong and Qin (2020) noticed that the normal
data are simulated in a narrow range of the process
and thus do not reflect typical dynamic and stochastic
characteristics of real data. Therefore, the stripper unit
shown in Fig. 4 is chosen to test the predictive monitoring
scheme, since this unit has reasonable dynamic responses
under normal conditions. The stripper unit contains 8
variables, which are XMEAS(14-19) and XMV(8,9).

A DiCCA model is built using the normal dataset contain-
ing 960 samples with a sampling rate of 3 minutes. The
first 2 DLVs are able to exhaust the predictable variability
in the data. Fig. 5 compares the process monitoring using
standard PCA which has no prediction power vs. the pre-
dictive monitoring result using the DiCCA model. When
the DiCCA predictions are used, the control regions are
cetered around the predictions. Monitoring the prediction
errors leads to a much smaller control region. The right
chart in the figure shows the prediction error sequence for
the first 200 data points, where the origin corresponds to
the predicted values. By monitoring the prediction errors,
we obtain more compact control regions.

6. CONCLUSIONS

With the recent development in the theoretical founda-
tions and applications of data science, dynamic control,
estimation, and monitoring can benefit greatly from these
developments. Engineering system data require specialized
analytics and knowledge. Both data and first principles
models should be integrated with varying proportions of
each part to yield reliable solutions. While physical and
chemical sciences develop principles based on which mech-
anistic models are established, data analytics provide real-
time information that reflects changes in the processes,
characterizes uncertainty, and indicates emerging situa-
tions.

While deep learning has demonstrated convincing suc-
cesses for image analysis and other applications, inter-
pretable machine learning is needed for engineering ap-
plications. One common type of engineering data is high
dimensional time series data, which is a promising area to
benefit from the integration of data science and dynamic
system theory. For time series data often found in process
systems, latent dynamic variable modeling methods are
effective to extract the principal variations in the data
in a low dimensional subspace. The approaches effectively
distill latent features from the data for easy interpreta-
tion, prediction, and visualization. Possible applications
include industrial data analytics, energy analytics, envi-
ronmental applications, economic data modeling, image
sequence modeling, and other high dimensional time-series
problems.
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Fig. 2. Left: plots of the 18 variables for DiCCA modeling. Right: plots of three leading DLVs of DiCCA.
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Fig. 3. 3D scatter plot of the first three leading DLVs.

Fig. 4. The stripper unit of the Tennessee Eastman process
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