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Abstract: Stealthy false data injection attacks on cyber-physical systems introduce erroneous
measurements onto sensors with the intent to degrade system performance. An intelligent at-
tacker can design stealthy attacks with knowledge of the system model and noise characteristics
to evade detection from state-of-the-art fault detectors by remaining within detection thresholds.
However, during these hidden attacks, an attacker with the intention of hijacking a system will
leave traces of non-random behavior that contradict with the expectation of the system model.
Given these premises, in this paper we propose a run-time monitor called Cumulative Sign
(CUSIGN) detector, for identifying stealthy falsified measurements by identifying if measure-
ments are no longer behaving in a random manner. Specifically, our proposed CUSIGN monitor
considers the changes in sign of the measurement residuals and their expected occurrence in
order to detect if a sensor could be compromised. Moreover, our detector is designed to be a
memoryless procedure, eliminating the need to store large sequences of data for attack detection.
We characterize the detection capabilities of the proposed CUSIGN technique following the
well-known χ2 failure detection scheme. Additionally, we show the advantage of augmenting
CUSIGN to the model-based Cumulative Sum (CUSUM) detector, which provides magnitude
bounds on attacks, for enhanced detection of sensor spoofing attacks. Our approach is validated
with simulations on an unmanned ground vehicle (UGV) during a navigation case study.
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1. INTRODUCTION

Today’s cyber-physical systems (CPSs) are fitted with
multiple on-board sensors and computers that make them
capable of many civilian and military applications with
minimal/no human supervision. Autonomous navigation,
transportation, surveillance, and task oriented jobs are
becoming more common and ready for deployment in real
world applications especially in the automotive, indus-
trial, and military domains. These various enhancements
in autonomy are possible thanks to the tight interaction
between computation, sensing, communications, and actu-
ation that characterize CPSs. With these increasing capa-
bilities, comes the risk of more security vulnerabilities to
cyber-attacks like sensor spoofing with the intent to induce
undesired system behavior. An example of this problem
was demonstrated by authors in [Bhatti and Humphreys
(2017)] in which GPS data were spoofed to slowly drive a
yacht off the intended route.

Many systems, including vehicle technologies, typically
have well studied dynamical models and their sensors
have specific expected behaviors according to their char-
acterized noise profiles. Malicious attackers aim to com-
promise a system by diverting system states to unsafe
regions, while remaining hidden within system detection
boundaries. Despite lying within magnitude boundaries to
remain undetected, non-random patterns arise that violate
the expected behavior from normal system behavior. For
example an attacker with the intention of hijacking an au-
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tonomous system while remaining stealthy will manipulate
sensor measurements pushing them toward one direction.

Considering the problem at hand, in this work, we lever-
age the known characteristics of the residual – defined
as the difference between sensor measurement and state
prediction – to build a memoryless run-time monitor to
detect non-random behaviors in sensing. To this end, we
consider the χ2 detection scheme [Mo et al. (2010)] which
creates a test measure to monitor a vector of Normally
distributed residuals. To monitor for randomness, we lever-
age the signed value of the difference between the χ2

distributed test measure and an arbitrary reference point
within its known distribution. Systems operating under
normal conditions have expected probabilities of whether
the test measure should be greater or less than the chosen
reference point. Our Cumulative Sign (CUSIGN) dynamic
detector, inspired by Cumulative Sum (CUSUM) theory
[Page (1954)], leverages the history of sign valued differ-
ences between the test measure and the reference point,
resulting in an alarm rate which is monitored at run-
time for attack detection purposes. Thus, as a sensor is
compromised, its corresponding residual will leave a trail
of non-random behavior and will not follow an expectation.

In summary, the main objective of this work is to find
stealthy sensor attacks exhibiting non-random behavior
within the noise profile of a system in the presence of
sensor and process noise. The contribution of this paper is
twofold: 1) we propose the CUSIGN detection framework
to deal with hidden non-random sensor attacks, typically
undetectable by conventional detectors, by monitoring the
expected alarm rate associated with consecutive changes
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of signs in the test measure; 2) we introduce a memoryless
feature to the CUSIGN detection procedure by leveraging
a modified version of Welford’s online algorithm [Welford
(1962)], which we call a Memoryless Run-time Estimator
(MRE), that uses a pseudo-window to monitor the alarm
rate at run-time, removing the need of storing the entire
sequence of data over the duration of the operation. We
show empirical results about the MRE with a chosen
pseudo-window length to find bounds for detection. Our
framework is also combined with the CUSUM technique
to create a complete detector framework. Furthermore,
we include simulations on a UGV model to validate the
proposed detection scheme.

1.1 Related Work

The subject of CPS security has garnered considerable
interest in analyzing detection methods for stealthy sensor
attacks that intend to degrade system performance. This
work builds on previous research considering deceptive
cyber-attacks to systems by injecting false data to sensor
measurements while trying to remain undetected [Mo
et al. (2010)]. Previous works have analyzed the effects
of malicious sensor attacks on the Kalman filter [Bai and
Gupta (2014)]. Similarly, authors in [Mo et al. (2010);
Kwon et al. (2013)] discuss how undetected attacks can
compromise closed-loop systems, causing state and system
dynamic degradation.

Several attack detection techniques exist in the literature
that analyze the residual, one of which is the Sequential
Probability Ratio Testing (SPRT) [Kwon et al. (2016)]
that tests the sequence of incoming residuals one at a time
by taking the log-likelihood function (LLF). Compound
Scalar Testing (CST) in [Kwon et al. (2013)] is a computa-
tionally friendly technique that reduces the residual vector
with known residual variances into a scalar test measure
of χ2 distribution. An improvement of CST in [Miao et al.
(2014)] is made by including a coding matrix to sensor
outputs that is unknown to attackers, then an iterative
optimization algorithm is used to solve for a transform
matrix to detect stealthy attacks.

Different from these previous works that leverage residual-
based techniques, we build a framework to monitor sensor
measurements to find previously undetectable attacks by
searching for non-random behavior. The CUSIGN detector
proposed in this work to find non-random behaviors is
inspired by the theory of CUmulative SUM (CUSUM),
developed in [Page (1954)] that is commonly used as
a monitor for change detection, such as a change in
mean. Authors in [Murguia and Ruths (2019)] formalized
a model-based detector of the CUSUM algorithm by
leveraging known characteristics of the system dynamical
and noise models.

Several statistical techniques are available in literature to
test for randomness by leveraging a sequence of data and
test a hypothesis. Among randomness tests, the Wald-
Wolfowitz runs test [Wald and Wolfowitz (1940)] observes
consecutive values that belong to one of two different
groups (known as a run) over a given sequence. Similarly,
the Serial Independence runs test [Cammarota (2011)]
observes the number of runs of the difference between
current and previous values over a sequence of data. The
Monobit (frequency) test [Zhu et al. (2016)] observes a
sequence of 1’s and 0’s to determine if they are equally
probable. This work leverage these principles to detect
non-random patterns in sensor measurements.

The remainder of this work is organized as follows: In
Section 2 we begin by introducing the system modeling
and problem formulation, followed by the characterization
of our CUSIGN detector with an empirically derived mem-
oryless detector operation to provide detection bounds in
Section 3. In Section 4 we briefly discuss the CUSUM at-
tack detector to compare with CUSIGN. Finally, in Section
5 we demonstrate through simulations the performance
of our framework augmented with an existing CUSUM
detector before drawing conclusions in Section 6.

2. PRELIMINARIES & PROBLEM FORMULATION

2.1 Model

In this work we consider autonomous cyber-physical sys-
tems whose dynamics are described by a discrete-time
linear system in the following form:

xk+1 = Axk +Buk + νk
yk = Cxk + ηk,

(1)

with A ∈ Rn×n the state matrix, B ∈ Rn×m the input
matrix, and C ∈ Rs×n the output matrix with the state
vector xk ∈ Rn, system input uk ∈ Rm, output vector
yk ∈ Rs providing measurements from s sensors from the
set S = {1, 2, . . . , s}, and sampling time-instants k ∈ N.
Process and measurement noises are multivariate zero-
mean Gaussian uncertainties ν = N (0,Q) ∈ Rn and η =
N (0,R) ∈ Rs with covariance matrices Q ∈ Rn×n,Q ≥ 0
andR ∈ Rs×s,R ≥ 0 respectively, and are assumed static.

During operations, a Kalman Filter (KF) is implemented
to provide a state estimate x̂k ∈ Rn in the following form,

x̂k+1 = Ax̂k +Buk +L(yk −Cx̂k), (2)

where the Kalman gain matrix L ∈ Rn×s is

L = APCT (CPCT +R)−1. (3)

For ease, we assume that the KF is at steady state before
sensor attacks occur, such that limk→∞Pk = P . The
estimation error of the steady state KF is defined as
ek = xk − x̂k while its residual rk is given by

rk = yk −Cx̂k = Cek + ηk + ξk, (4)

and the covariance matrix of the residual (4) is defined as

Σ = E[rk+1r
T
k+1] = CPCT +R ∈ Rs×s. (5)

2.2 Residual for Detection

A widely used sensor measurement failure detector in
CPSs is the χ2 detector [Mo et al. (2010)], computed by
the following quadratic test measure

zk = rTk Σ−1rk = rTk (CPCT +R)−1rk ∈ R≥0. (6)

In the absence of sensor attacks, the residual is a Normally
distributed random vector rk ∼ N (0,Σ) where rk ∈ Rs,
the test measure zk belongs to a χ2 distribution with s
degrees of freedom. Under the assumption that the system
is not under attack (i.e. the residual satisfies (5)), the
scalar test measure in (6) follows

E[zk] = s, Var[zk] = 2s. (7)

The general case of the χ2 detector compares the scalar
test measure zk to a threshold T by:
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{
zk ≤ T −→ no alarm,
zk > T −→ alarm. (8)

where the design of the threshold T is independent of
system noises and based on the number of sensors, s.

When one or more sensors are attacked, properties of the
residual rk and the test measure zk may no longer hold.
When considering sensor attacks, the output of the system
can be written as:

yk = Cxk + ηk + ξk, (9)

where ξk ∈ Rs represents the attack vector subject to
false data injection attacks onto sensors. A limitation to
the method from (8) is that stealthy attacks purposely
hidden within detection boundaries may be undetectable.
However, an attacker with the intent of hijacking a CPS,
may leave traces of non-random behavior on the test mea-
sure zk. To detect such non-random behavior, we propose
a framework consisting of adding a memoryless run-time
dynamic detector on the test measure zk searching for non-
random behavior, while eliminating the need to store large
amounts of data for detection purposes.

2.3 Problem Statement

An attacker trying to hijack a system, will consequently
leave behind non-random behavior to sensor measure-
ments. In this work we focus specifically on sign changes
and their expected occurrences. With these considerations
in mind, a system that is not compromised will have
measurement residuals with signs that are normally dis-
tributed and with proper rate of sign changes.

Definition 1. A system that is not compromised will
behave in a random manner if the signed value of the
difference between the test measure and a reference point
maintain an expected sign occurrence.

Since we are considering sensor spoofing, unknown attack
signals containing malicious data can disrupt randomness,
resulting in measurements that display non-random signed
behavior. Formally, the problem that we are interested in
solving is:

Problem 1. Randomness of Measurements: Given
the test measure (6) computed from the residual rk
and the residual covariance Σ as defined in (4) and
(5), find a policy to determine at run-time whether a
sensor measurement is non-random, i.e., if the condition
in Definition 1 does not hold.

Furthermore, in this work we impose that the computation
from all aspects of the detector must have a memoryless
property.

Definition 2. A detector satisfies the memoryless prop-
erty when the detection procedure does not rely on storing
and using a sequence of data over any window horizon.

Problem 2. Memoryless Property: With the given
test measure (6) to analyze, find a policy for a memoryless
detection procedure without the need to store a collection
of data over any length of time to determine if the system
is compromised, satisfying the condition in Definition 2.

2.4 System Architecture

The overall cyber-physical system architecture including
the CUSIGN detector is summarized in Fig. 1. CUSIGN,

Fig. 1. The architecture of a CPS while experiencing sensor
attacks augmented with our CUSIGN detector.

which can be augmented to any boundary detector provid-
ing magnitude bounds, is placed in the system feedback to
monitor the relationship between measurement and state
prediction. We focus on stealthy sensor attacks where an
attacker may inject an attack signal at any point between
the sensors and the state estimator, in an attempt to affect
system behavior.

3. CUMULATIVE SIGN DETECTOR

We develop a Cumulative Sign (CUSIGN) detector that
analyzes the sign of the given test measure zk relative to
a reference point and determines whether there is non-
random behavior occurring. The model-based CUSIGN
detector monitors the test measure from (6) and outputs
an alarm when the CUSIGN test variable reaches a user
defined threshold. For a given user defined threshold, an
expected alarm rate can be found that is independent from
the model of the system (1).

In normal conditions, i.e., without attacks or sensor mal-
functions, the test measure zk has a specific probability of
being higher or lower than a given user defined reference
point zref ∈ R>0 within its known distribution. We for-
malize these probabilities of zk being higher or lower than
the reference point by

Pr
(
zk < zref

)
= γ

(s
2
,
zref

2

)
,

Pr
(
zk > zref

)
= 1− γ

(s
2
,
zref

2

)
,

(10)

where γ(·, ·) is the regularized lower incomplete gamma
function [Ross (2006)]. The sign of zk with respect to the
reference zref is computed by the following

sgn(zk − zref) :=

{−1, if zk − zref < 0,
0, if zk − zref = 0,
1, if zk − zref > 0,

(11)

where the probability of each scenario occurring is

Pr
(
sgn(zk − zref) = −1

)
= p−,

Pr
(
sgn(zk − zref) = 0

)
= 0,

Pr
(
sgn(zk − zref) = 1

)
= p+.

(12)

An example of (12) is shown in Fig. 2, where the proba-
bilities p+ and p− determine whether zk will be higher or
lower than zref given zk ∼ χ2.

The procedure of CUSIGN is an accumulation of signed
values, denoted by the CUSIGN test variables S+

k and

S−k . Each variable is a monitor checking for a change in

the probability of the signed value sgn(zk − zref), one for
positive and the other for negative changes. The following
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Fig. 2. Probabilities p+ and p− determined by zref.

procedure summarizes the CUSIGN detection in both the
positive and negative cases:

CUSIGN Detector Procedure

Initialize S+
0 = 0,

S+
k = max

(
0, S+

k−1 + sgn(zk − zref)
)
,

S+
k = 0 and Alarm ζ+k = 1, if S+

k−1 = τ,

Initialize S−0 = 0,
S−k = min

(
0, S−k−1 + sgn(zk − zref)

)
,

S−k = 0 and Alarm ζ−k = 1, if S−k−1 =−τ.

(13)

The design of the test variable sequences S+
k and S−k are

to accumulate the signed value sgn(zk − zref) ∈ {−1, 0, 1}
and triggering an alarm ζ±k = {ζ+k , ζ

−
k } ∈ {0, 1} when the

test variables reach the threshold values τ ∈ N+. When
either of the test variables are equal to their corresponding
thresholds, the given test variable is reset to 0. An example
of the CUSIGN test variable is shown in Fig. 3 where three
consecutive iterations zk > zref are satisfied at k = 1, 2, 3
(transitioning S+

k in the direction of p+). At k = 3, the

CUSIGN test variable S+
k reaches the threshold value

τ = 3 causing a reset such that S+
k → 0.

Fig. 3. Transitions of the CUSIGN test variable S+
k with

threshold τ = 3.

Choosing a specific threshold τ results in expected alarm
rates E[α+] and E[α−] for both the positive and negative
cases of the CUSIGN procedure (13). In the case that
zref = E[median(zk)] such that p+ = p−, the resulting
expected alarm rates are equal E[α+] = E[α−].

Similar to the implementation in [Murguia and Ruths
(2019)], the transition of the CUSIGN test sequences S±k
can be constructed as a Markov chain with a transition
matrix modeled from the probabilities of sgn(zk − zref).
With a user defined threshold τ to trigger an alarm and
causing a reset condition of the CUSIGN test variable to
0, we show the transitions of S±k with a Markov chain
diagram, as follows in Fig. 4.

Given a chosen threshold value τ ∈ N+ as a value
that triggers an alarm when |S±k | = τ , we describe the
Markov chain in Fig. 4 in the form of a Markov transition
matrix T ± ∈ R(τ+1)×(τ+1). The CUSIGN Markov Chain,
occurring in a discrete manner, contains τ + 1 states
denoted as M = {M0,M1, . . . ,Mτ} where Mτ is an
absorbing state that is equal to the threshold, causing the
CUSIGN test sequence S±k to reset to M0 (i.e., S±k = 0).

Fig. 4. Markov chain for both positive and negative cases
of the CUSIGN test sequence with threshold τ .

The CUSIGN Markov transition matrix T ± for both
positive T + and negative T − cases with a probability
distribution of sgn(zk − zref) are written by

T ± =


p∓ p± 0 0 . . . 0
p∓ 0 p± 0 . . . 0
0 p∓ 0 p± 0
...

. . .
. . .

...
0 . . . 0 p∓ 0 p±
0 . . . 0 0 0 1

 . (14)

The transition matrix T ± structure remains the same
on any system, where the matrix size depends only on
the value of the threshold τ . Transition probabilities for
transient states in T ± adhere to the following

T ±
{

Pr(Mj →Mj+1) = p±, for j = {0, . . . , τ −1},
Pr(Mj →Mj−1) = p∓, for j = {1, . . . , τ −1},
Pr(M0 →M0) = p∓,

(15)

and the final row represents an absorbing state containing
elements equal to 0 besides the last element equaling 1.

We define R± ∈ Rτ×τ as a matrix obtained from T ± with
its last row and column removed (i.e., the absorbing state
at threshold τ is removed), representing the transition
probabilities to and from the transient states, also known
as the fundamental matrix. Elements of R± are all non-
negative and row sums are equal to or less than one, while
the eigenvalues satisfy ρ[R±] < 1 such that (R±)i → 0 as
i → ∞ and

∑∞
i=0 (R±)i = (Iτ −R±)−1, where ρ[·] is the

spectral radius and Iτ is the identity matrix of size τ .

Lemma 1. Given a system with a CUSIGN detector (13)
with a chosen threshold τ ∈ N+ and reference point
zref ∈ R>0 that is not affected by sensor attacks such that
the residual sequence satisfies rk ∼ N (0,Σ) ∈ Rs and
zk = rTk Σ−1rk ∼ χ2 with s degrees of freedom, then the
inverse of the first element of the following vector

µ± = (Iτ −R±)−11τ×1 = (µ±1 , . . . , µ
±
τ )T , (16)

is the expected alarm rate, i.e., E[α±] = (µ±1 )−1.

Proof. Given the Markov chain containing τ+1 states de-
noted by M = {M0,M1, . . . ,Mτ}, a fundamental matrix
R± is taken from a designed Markov transition matrix (14)
to satisfy the transition probabilities (15). Leveraging the
theory of average run length (ARL) in CUSUM [Brook and
Evans (1972)], the ARL is defined as the average length
of time for the test sequence to reach the threshold τ to
trigger an alarm, determined by the fundamental matrix
R± containing the transient states within T ±. By defini-
tion, the inverse of the ARL to observe an alarm results
in the average frequency of obtaining an alarm, known as
the alarm rate. The ARL can be found by computing (16),
then by inverting the first element of µ±, i.e., (µ±1 )−1, we
obtain the expected alarm rate E[α±].
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3.1 Memoryless Run-time Estimation of Alarm Rates

In the design of CUSIGN, we trigger an alarm when a test
variable reaches a chosen threshold τ . Given a system not
experiencing sensor attacks, we have an expectation of the
alarm rates. Typically, to find an alarm rate, the number
of triggered alarms are tallied over a given period of time.
In this work, we want to create a “memoryless” procedure
to find an alarm rate.

The conventional method of finding an average x̄ of
a stochastic variable is x̄n = 1

n [
∑n
i=1 xi] where n is

the size the data set. This procedure requires storage
of the complete data set, where computation becomes
less efficient as n grows. A memoryless online algorithm
known as Welford’s online algorithm for computing a
mean incrementally was developed in [Welford (1962)]
by transforming the conventional method into an online
update by the following form

x̄n =
1

n

[
xn +

n−1∑
i=1

xi

]
=

1

n
[xn + (n− 1)x̄n−1]

=
1

n
[xn + nx̄n−1− x̄n−1] = x̄n−1 +

[
xn− x̄n−1

]
n

.

(17)

It can be seen in (17) that n grows indefinitely, equal
to the number of data points. We set a maximum value
for n such that max(n) = ` ∈ N+ to create a “pseudo-
window” for a rolling sequential estimation of an expected
mean. We name this modified version of Welford’s online
algorithm utilizing a pseudo-window ` as a Memoryless
Run-time Estimator (MRE). The behavior of MRE when
computing the mean similarly imitates the conventional
method of calculating the mean consisting of ` data points,
but without the need to store the entire sequence.

For the case of attack detection using alarm rates for
CUSIGN, we leverage MRE in (17) to find an online
estimation of an expected alarm rate E[α] (we omit ± for
α± in this section as the MRE applies to both the positive
and negative cases). Leveraging the pseudo-window of
length ` and replacing the counter n from (17) with k
for sampling time instances, we attain the equation

α̂k = α̂k−1 +

[
ζk − α̂k−1

]
`

, (18)

where ζk is the triggered alarm for CUSIGN, α̂k is an
estimate of the alarm rate at time instance k, and α̂0 = 0
initially at k = 0.

Proposition 1. Assuming the system is not experiencing
sensor attacks and the test measure follows zk ∼ χ2 for
time instances k ≥ 0, we empirically find that the alarm
rate is a Normal distribution as follows

α̂ ∼ N
(

E[α],
θE[α](1− E[α])

`

)
, (19)

where ` is the user defined pseudo-window length, θ ∈ R>0

is an empirically found scaling value, and E[α] is the
expected alarm rate, i.e., the probability that the test
variable Sk reach the threshold, triggering an alarm ζk = 1.

Given the distribution of α̂ in Proposition 1, the expecta-
tion of the estimated alarm rate follows

E[α̂] = E[α], Var[α̂] =
θE[α](1−E[α])

`
. (20)

Values of θ are found to be dependent on the chosen
threshold τ . Observed approximates of θ are presented in
Table 1 for thresholds τ = 1, 2, 3, 4 and ` ≥ 10.

Table 1. Empirical values for the scaling value
θ given thresholds τ = 1, 2, 3, 4.

Thresholds τ = 1 τ = 2 τ = 3 τ = 4

θ `
2`−1

.74`
2`−1

.7`
2`−1

.69`
2`−1

Remark 1. For the CUSIGN detector, we empirically find
that α̂ follows (19) when p+ ≈ p− (i.e., zref is chosen to
be at E[median(zk)] such that p− = p+ = 0.5). For a
reference point zref not placed near the expected distribu-
tion median, i.e., p+ 6≈ p−, we found that the distribution
of α̂ loses properties of the Normal distribution in (19).
Empirical results for observed α̂ and Var[α̂] considering
the case when p+ 6≈ p− can be found in Appendix A.

By leveraging the distribution of the estimated alarm rate
in (19), bounds of the alarm rate can be made.

Lemma 2. Assuming an uncompromised system with a
CUSIGN detector (13) with a reference point zref and
threshold τ ∈ N+, detection of sensor attacks occurs when
τα− ≤ α̂ ≤ τα+ where

τα± = E[α]± Z
√
θE[α](1− E[α])

`
. (21)

Proof. Given a CUSIGN detector with threshold τ ∈ N+

and reference point zref ∈ R>0 that determine transi-
tion probabilities p− and p+, an expected alarm rate
E[α] can be computed by inverting the first element in
(16). With E[α] and leveraging the Memoryless Run-time
Estimator with a pseudo-window of length `, the distri-
bution of the estimated alarm rate follows α̂ ∼ N (·, ·)
with properties from (20). Detection bounds τα± of a spe-
cific confidence level determined by Z of a Normally dis-
tributed random variable with properties from (20) follow

E[α] − Z
√

θE[α](1−E[α])
` ≤ α̂ ≤ E[α] + Z

√
θE[α](1−E[α])

`

satisfying (21), concluding the proof.

Detection of sensor attacks occur when an estimated alarm
rate α̂ goes beyond a threshold from τα± = {τα−, τα+}. Lower

bounds resulting in τα− < 0 are omitted as α̂ ∈ [0, 1τ ].

4. CUSUM DETECTOR REVIEW

The CUSIGN detector alone may not be sufficient as an
attacker can change the magnitude of a measurement, but
still maintain random signed behavior of the test measure
zk. The non-parametric quality of CUSIGN results in the
inability to monitor the magnitude of the test measure.
A well-known dynamic detector, the CUmulative SUM
(CUSUM) detector, leverages the magnitude of the test
measure sequence zk to look for changes in the mean
from an expectation. Formalized into a model-based attack
detector by [Murguia and Ruths (2019)] that outputs an
alarm, the CUSUM attack detection procedure follows

CUSUM Detector Procedure

Initialize C0 = 0,
Ck = max(0, Ck−1 + zk − b), if Ck−1 ≤ τC ,
Ck = 0 and Alarm ζCk = 1, if Ck−1 > τC .

(22)

The working principle of this detector is to accumulate
the test measure (6) in Ck, triggering an alarm ζCk = 1
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when the test variable surpasses the threshold τC . The test
variable Ck resets to zero either when the threshold τC is
surpassed or when Ck goes negative. A bias b is selected
based on properties of (5) such that Ck does not grow
unbounded. A detailed explanation of how to construct a
transition matrix for the probability distribution zk−b for
the model-based CUSUM can be found in [Murguia and
Ruths (2019)]. The authors provide a method for tuning
the threshold τC given a bias b for a desired alarm rate
E[αC ] with an assumption that the system is free of sensor
attacks, where the residual follows rk ∼ N (0,Σ), hence a
shifted χ2 distribution zk − b = rTk Σ−1rk − b.
Considering CUSUM as a stand-alone detector, an adver-
sarial wants to avoid attacks such that the test variable
Ck exceeds threshold τC at a higher rate, thereby causing
a reset Ck = 0 in (22) by satisfying the CUSUM procedure
sequence Ck = max(0, Ck−1 + zk − b) ≤ τC to trigger
alarms more often, resulting in a higher alarm rate αC .
Subsequently, an attacker can design an attack such that
it remains within bounds of CUSUM to not trigger alarms
more than expected. To include this attack vector, we can
rewrite the CUSUM procedure such that

Ck = max(0, Ck−1 +
(
‖Σ− 1

2 (Cek+ηk+ξk)‖2
)
−b). (23)

Assuming that a malicious attacker can have access to
the sensor measurements yk = Cxk + ηk and has perfect
knowledge of the state estimator, it will be able to find the
estimator outputCx̂k. With this information, the attacker
can solve for yk −Cx̂k = Cek + ηk to achieve the ability
of manipulating elements of ξk by

ξk = −Cek − ηk + Σ
1
2 ξτ

C

k (24)

such that max(0, Ck−1+(ξτ
C

k )T ξτ
C

k −b) ≤ τC can maintain
the test variable Ck within the detection threshold τC .

5. RESULTS

The proposed CUSIGN detector was validated in simula-
tion and augmented with CUSUM introduced in Section 4.
The case study presented in this paper is an autonomous
way-point navigation of a skid-steering differential-drive
UGV with the following linearized model [Nutaro (2011)]:

v̇ =
1

m
(Fl + Fr −Brv),

ω̇ =
1

Iz

(w
2

(Fl − Fr)−Blω
)
, θ̇h = ω,

(25)

where v, θh, and ω denotes the velocity, heading angle, and
angular velocity, forming the state vector x = [v, θh, ω]T .
Fl and Fr describe the left and right input forces from
the wheels, w is the vehicle width, while Br and Bl are
resistances due to the wheels rolling and turning. The
continuous-time model (25) is discretized with a sampling
rate ts = 0.01 to satisfy the system model described in
(1). The UGV is tasked to continuously navigate to four
goal-points along a square trajectory with side lengths of
5m maintaining a velocity v = 0.5m/s for 200s.

In the simulation, we perform two different attack se-
quences on the velocity sensor on-board the vehicle: 1)
a persistent attack and 2) an alternating pattern attack.
Both stealthy attack sequences are designed to be unde-
tectable by CUSUM, but are detected by CUSIGN due to
the creation of non-random patterns.

5.1 Simulations

We first consider the system under normal conditions
where ξk = 0. In Table 2 we show the alarm rate of the
system over 5 million data samples and compare the results
to the expected alarm rate E[α±] computed from (16) in
the case where p+ = p− = 0.5 for thresholds τ = 1, 2, 3, 4.
Next, in Fig. 5 we show the distribution of the alarm rate
estimate α̂ from the four cases in Table 2 overlaid with the
expected distributed curve (in red) according to (20).

Table 2. E[α±] when p+ = p− = 0.5.

Thresholds τ = 1 τ = 2 τ = 3 τ = 4

E[α±] 0.5 0.16̄ 0.083̄ 0.05

α± (sim.) .50006 .16692 .083291 .050012

(a) (b) (c) (d)

Fig. 5. Resulting distributions of α̂ when p+ = p− = 0.5
for (a) τ = 1, (b) τ = 2, (c) τ = 3, (d) τ = 4.

Now, considering the UGV (25) case study in the presence
of hidden attacks on the velocity sensor on state x1 = v, we
show the detection capabilities of CUSIGN. The CUSIGN

is designed with zref = E[median(zk)] ≈ s
(
1 − 2

9s

)3
where s = 3 such that the transition probabilities satisfy
p± = 0.5 and threshold τ = 2. The expected alarm rate
E[α] = 0.16̄ and the Memoryless Run-time Estimator (18)
with pseudo-window length ` = 100 has detection bounds
(21) at τα− = 0.0987 and τα+ = 0.2347 where Z = 3 for
a 99.7% confidence. The design of CUSUM contains a
bias b = 1.1s = 3.3 with a threshold τC = 2.3226 to
satisfy an expected alarm rate E[αC ] = 0.15 (see [Murguia
and Ruths (2019)] for tuning details), where the alarm
rate is computed by a conventional method of length `

by 1
`

∑k
k−`+1 ζ

C
k . Fig. 6 shows the results of a persistent

attack (23), (24) beginning at k = 10, 000 with a noiseless
magnitude of 0.1τC . The alarm rate α̂C for CUSUM is
unaffected while CUSIGN discovers the attack and alarm
rates α̂± both go beyond the detection bounds τα± (red
dashed lines). A second attack shown in Fig. 7 is attempted
with an alternating noiseless pattern of {0.1τC ,−0.1τC}
to show that CUSIGN can detect patterns. Again, alarm
rates for CUSIGN find the non-random patterns and go
beyond the detection bounds τα± while CUSUM is not able
to detect the non-random behavior.

6. CONCLUSIONS & FUTURE WORK

In this paper we have characterized the CUSIGN proce-
dure for detection of hidden sensor attacks that present
non-random behavior. In particular, we have constructed
a Markov chain of the CUSIGN test sequence to model
a resulting expected alarm rate. We have formalized a
memoryless run-time method for computing an alarm rate
estimate using a modified version of Welford’s online algo-
rithm with a pseudo-window, which we call the Memory-
less Run-time Estimator (MRE). We empirically found the
resulting estimated alarm rate distribution and leveraged
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Fig. 6. Alarm rates α̂± and α̂C for both CUSIGN and
CUSUM with a hidden persistent sensor attack.

Fig. 7. Alarm rates α̂± and α̂C for both CUSIGN and
CUSUM with a hidden alternating sensor attack.

it to provide detection bounds given a specific level of
confidence. Then, we characterized attack sequences that
remain undetected to the CUSUM dynamic attack detec-
tor, that leave trails of non-random behavior for CUSIGN
to detect the attack.

In our future work we plan to extend the current work
to leverage CUSIGN on CPSs with redundant sensors to
detect and remove compromised sensors and create an
attack resilient controller.
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Appendix A. EMPIRICAL RESULTS

From Remark 1 in Section 3.1, we show in Fig. A.1
the gradual divergence from the normal approximation
as p+ and p− are no longer similar as the distribution
of the estimated alarm rate estimate α̂ becomes skewed.
The empirical results provided throughout this section are
results from 5 million samples, thus giving an accurate
representation of the resulting distributions.

(a) (b) (c)

Fig. A.1. Resulting distributions of α̂ when (a) p+ = p− =
0.5, (b) p− = 0.37, (c) p− = 0.3.

Furthermore, Table A.1 provides the expected E[α̂] and
simulated alarm rates, while Table A.2 provides the square
root of the expected and simulated variance

√
Var[α̂] (i.e.,

standard deviation). It can be seen that as p± ≈ 0.5,
the simulated mean of the alarm rate estimates remain
approximately equal to the expectation (i.e., ¯̂α ≈ E[α]),
but the simulation results for standard deviation diverge
from the expected variance as p+ 6≈ p−.

Table A.1. Results of E[α̂] for ` = 100.

p± .4 .5 .6

E[α̂]/sim (τ=1) .400/4.01 .500/.500 .600/6.01

E[α̂]/sim (τ=2) .1143/.1142 .1666̄/.1665 .2250/.2251

E[α̂]/sim (τ=3) .0484/.0483 .0833̄/.0832 .1256/.1258

E[α̂]/sim (τ=4) .0244/.0239 .0500/.0500 .0835/.0833

Table A.2. Results of std[α̂] for ` = 100.

p± .4 .5 .6

std[α̂]/sim (τ=1) .0346/.0347 .0354/.0355 .0346/.0347

std[α̂]/sim (τ=2) .0194/.0204 .0227/.0226 .0254/.0238

std[α̂]/sim (τ=3) .0127/.0138 .0163/.0163 .0196/.0185

std[α̂]/sim (τ=4) .0091/.0099 .0128/.0128 .0163/.0153
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