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Abstract: Traumatic brain injury (TBI) occurs in 69 million people annually and many patients
go on to develop disabling disorders such as post-traumatic epilepsy (PTE). This work focuses on
data modeling and analysis for TBI patients who develop seizures. We investigated and analyzed
MRI scans using voxel-based morphometry (VBM) to characterize gray level intensity differences
between TBI patients who developed seizures and TBI patients who have not developed seizures.
We used MRI scans from the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy,
which aims to identify epileptogenic biomarkers through an international project involving
multiple species, modalities, and research institutions. Using the VBM approach, statistically
significant voxel changes were identified between the two clinical groups in different brain regions.
Stochastic modeling and statistical analysis of the data in terms of interesting, confounding
factors (age and total intracranial volume) and residual variability applied to each voxel
independently, are presented. Statistical inference is used to test hypotheses that are expressed
as functions of the General Linear Model estimated regression parameters. In addition, we used
significant voxels to train a Neural Network (NN) classifier and evaluate the informative power
of the proposed approach. The NN was able to distinguish the two clinical groups with an Area
Under the receiver operating characteristics Curve of 62%.
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1. INTRODUCTION

Post-traumatic epilepsy (PTE) is a pathology secondary
to traumatic brain injury. PTE is not a homogeneous
condition and can appear several years after the TBI
with an incidence of up to 50%. PTE is diagnosed when
recurrent and unprovoked seizures occur at least one week
after TBI. An epileptic seizure is a transient occurrence
of signs and symptoms due to abnormal excessive or
synchronous neuronal activity in the brain. Seizures may
cause sudden and unexplainable emotions, nausea, hallu-
cinations, loss of consciousness, falls and massive muscle
spasms which critically compromise the quality of life of
the patients and their families Devinsky (2007). However,
the mechanism by which trauma to the brain tissue leads
to recurrent seizures is unknown and there is currently
no treatment that prevents the development of PTE. The
Epilepsy Bioinformatics Study for Antiepileptogenic Ther-
apy (EpiBioS4Rx) has been devoting extensive efforts to
prevent epileptogenesis by identifying validated biomark-
ers through the study of multimodal and longitudinal data
in order to enrich the population eligible for clinical trials
Garner et al. (2019b); Dewan et al. (2018). Illness-related

* TThis study was funded by the National Institute of Neurological
Disorders and Stroke (NINDS) of the National Institutes of Health
(NIH) under award numbers ROINS111744 and Ub54 NS100064
(EpiBioS4Rx).

Copyright lies with the authors

2261

brain changes can be detected with structural Magnetic
Resonance Imaging (MRI), which has played an increas-
ingly important role for the early diagnosis of neurodegen-
erative disorders Lebedeva et al. (2017); Amoroso et al.
(2018a,c). In this work, we investigated if structural MRI
changes at the voxel level can be related to seizure develop-
ment in TBI patients. Voxel-based morphometry (VBM)
is a well-consolidated method for computer-aided, volu-
metric MRI processing (Ashburner Friston, 2000). Usually
applied on T1 MRI images it can successfully detect local
gray matter changes related with several neurodegener-
ative diseases and neurological conditions Kakeda and
Korogi (2010). Even though VBM can require a significant
computational burden, we decided to use this technique for
three main reasons: (i) it allows for the study of the whole
brain; (ii) it does not require any Region-Of-Interest (ROI)
assumption, thus affording an opportunity for discovery
of previously unidentified structural alterations; (iii) it
does not depend on ROI segmentation that is particularly
challenging for TBI patients who can have large brain
lesions Amoroso et al. (2018b). VBM has been used to
detect morphological changes related to focal epilepsy, but
to the best of our knowledge this is the first VBM study
aimed to detect statistical differences in brain anatomy
between seizure-free and seizure affected subjects. Specifi-
cally, we examined MRI changes due to TBI consequences
such as cerebral edemas, hemorrhages, contusions, and
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distortions of brain tissue. Machine learning methods
and multivariate data analysis for accurate detection of
brain diseases have been receiving an increasing attention
Khedher et al. (2015); Abraham et al. (2014). Several
validation strategies, classifier models, feature extraction
techniques, and selection methods, applied especially to
MRI measures, have been explored and have demonstrated
their effectiveness in many fields of neuroscience Al Zoubi
et al. (2018); Lebedev et al. (2014); Shah et al. (2019).
Therefore, to evaluate the discrimination power of VBM,
we combined statistical analysis, stochastic modeling, and
artificial neural network techniques. Neural network classi-
fiers are adaptive learning algorithms that can handle dif-
ferent types of medical data and integrate into categorized
outputs using a nonlinear function of the sum of its inputs.
Neural networks have shown promising results in several
applications, ranging from image segmentation to pattern
recognition, and have been increasingly incorporated in
many aided-diagnosis systems within the clinical practice
Bron et al. (2015); Amato et al. (2013); Kaymak et al.
(2017); Ortiz et al. (2019).

2. MATERIALS AND METHODS
2.1 Materials

In this work, we used 61 T1 magnetization-prepared rapid
acquisition gradient echo (MPRAGE) MRI scans of TBI
subjects from EpiBioS4Rx. Among these subjects, 22 have
had at least one seizure within 6 months of a TBI and
39 have not had any seizures. Additional clinical and
demographic information relative to these subjects are
summarized in Table 1

Table 1. Sample size, gender, and Glasgow

Coma Score (GCS) information are reported

for each clinical group. Age and GCS were pro-

vided in terms of mean and standard deviation.

No statistically significant differences between

the two classes were found (p — values < 0.05)
Jain et al. (2019).

Clinical status ~ Sample size Age Female/Male GCS
seizure-free 39 37.324+21.33 5/34 10.97 + 3.98
seizure-affected 22 42.27 4+ 18.16 4/18 8.91 £4.01

2.2 VBM pipeline

Each MRI scan was first skull-stripped and then oriented
and affinely registered to the MNI 152 template using
Oxford FMRIB Software Library (FSL) Jenkinson et al.
(2012). In this way, we obtained MRI images suitable
to run VBM with Statistical Parametric Mapping 12
(SPM12) through MATLAB R2018B Ashburner (2009).
The VBM pipeline consists of several steps as shown in Fig.
1. The normalized images were first segmented into gray
matter (GM), white matter (WM) and cerebrospinal fluid
(CSF). Then, we used SPM12 Diffeomorphic Anatomical
Registration Through Exponentiated Lie Algebra (DAR-
TEL) to increase the accuracy of inter-subject matching
by estimating the deformations that best align gray matter
and white matter images and iteratively registering them
with their average gray matter and white matter, respec-
tively Ashburner (2007). Finally, the estimated deforma-
tions were used to obtain spatially normalized, modulated

and smoothed brain tissue images in the MNI 152 tem-
plate. Smoothing was carried out with an 8 mm Gaussian
kernel Friston et al. (1991).

1

[ Brain extraction ]
-—»( Affine registration to the template ]
[ Brain tissue segmentation J

Estimation of the deformation parameters to
optimize inter-subject alignment

Normalization, modulation and smoothing in
the MNI 152 template

significant voxels for the discrimination of
the two clinical groups

[ General linear model parameter estimation ]

Statistic Inference to find the most ]

Fig. 1. Flowchart of the VBM pipeline that was used to
find the most significant voxels for the discrimination
of the two clinical groups: seizure-free and seizure-
affected TBI patients.

2.8 Statistical analysis

In the VBM analysis, each voxel v; (with ¢ voxel position in
the brain) was considered as a stochastic variable modeled
across the different subjects. Gray matter volume maps,
stochastically described as a Gaussian random field, were
statistically examined using the General Linear Model
(GLM) fitted at each voxel according to random Gaus-
sian field theory Friston et al. (1994). Linear functions or
contrasts obtained from the GLM fit were used to test for
differences in gray matter volume between seizure-free and
seizure-affected patients through a two-sample analysis.
Age and total intracranial volume (TIV), obtained from
the sum of GM, WM, and CSF, were entered as covariates-
of-no-interest. Specifically, F-contrast was used to test the
null-hypothesis with a significance probability threshold of
p < 0.05 family-wise error (FWE) corrected for multiple
comparisons at a voxel-level and a spatial extent thresh-
olds of 0 voxels Nichols (2012).

2.4 Anatomical interpretation and informative power

Clusters of significant voxels detected by VBM were used
as a mask to identify, on the Talairach atlas Lancaster et al.
(1997) (defined on the MNI 152 template), the anatomical
regions corresponding to those voxels and thus related to
seizure development. We selected the significant voxels
from each TBI subject to train a neural network (NN)
and evaluate to what extent these voxels can distinguish
the two clinical groups. A NN consists of different layers:
the input layer that receives the input features, the hidden

2262



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

layers that learn and model the incoming features and,
the output layer that produces the ultimate result. NN
classifier was implemented with a 5 unit hidden layer using
the latest version of R package nnet. Classification process
consisted of 1000 round of stratified cross-validation. Each
round included four main steps schematized in Fig. 2:
(i) training and validation set were defined by randomly
picking 80% and 20% of the stratified dataset, respectively;
(ii) important features were selected with a Random
Forest classifier in terms of mean accuracy decrease; (iii)
training set was used to build classification models with
the NN, and (iv) classification models and important
features retrieved from the training set were used to
classify the wvalidation set with the NN, blind to the
diagnosis.

Extraction of the significant voxels obtained with VBM

Feature selection

validation set

Classification model
computation

Fig. 2. Flowchart of the steps performed in each cross-
validation rounds. Final classification results are com-
puted by averaging the performances of the single
rounds over the whole cycle of cross-validations.

3. RESULTS
3.1 Anatomical results

After the FWE correction, we obtained 3645 significant
voxels with an F-contrast value greater than 5208.12.
Fig. 3 shows axial slice views of some of the voxels
that were most significant for the group discrimination,
along with the slice position on the sagittal plane. Most
of the significant voxels are located in left and right
posterior cerebellum (corresponding to semi-lunar lobule,
tonsil, uvula and decline gray matter) and in right and
left anterior cerebellum (corresponding to dentate nodule,
fastigium and culmen gray matter). We found significant
voxels also in Brodmann area 8 of the left middle frontal
gyrus, right inferior frontal gyrus including orbital part,
left and right sub-gyral in the frontal lobe, left temporal
lobe, supramarginal gyrus and postcentral gyrus of the
right parietal lobe, and right brainstem pons and medulla.

Fig. 3. Axial view of 5 brain slices showing some significant
voxels found with the VBM analysis. In the lower right
corner, the positions of the axial planes displayed in
figure are reported in green along the sagittal plane.

3.2 Classification results

We evaluated the informative power of the significant vox-
els obtained from VBM in terms of average accuracy, sen-
sitivity, specificity and area under the receiver operating
characteristics curve (AUC) computed over all the cross-
validation rounds. The NN classifier, trained appropriately
on the most significant voxels extracted from each subject
of the training set, was able to distinguish seizure-free and
seizure-affected TBI subjects of the validation set with a
mean accuracy of 0.60 4= 0.02, a mean specificity of 0.54 +
0.03 and a mean sensitivity of 0.67+0.03. In addition, Fig.
4 shows the mean receiver operating characteristics curve
and the mean AUC Hajian-Tilaki (2013).
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Fig. 4. Neural network classification performance in terms
of area under the receiver operating characteristics
curve (AUC) obtained using the most significant vox-
els for discriminating TBI subjects who have devel-
oped seizures and TBI patients who have not.

To better investigate the NN functioning and have more
insight on the clinical interpretation of the results, we
also analyzed the distributions of the classification clinical
scores that are shown in Fig. 5.

2263



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

o
(=
w
—
seizure-affected
seizure-free
group overlap
o
o
o
—
>
o
c
@
=]
o
o
.
o
o -
v
o -
T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Clinical Score

Fig. 5. The classification score distributions using signifi-
cant voxels obtained with VBM. Each column of the
histogram contains the number of seizure-free (red)
and seizure affected (blue) TBI patients whose score
lies in that bin. Purple bins indicate the overlapping
of the two distributions.

From the histograms, we can notice that the NN for the
majority of the cases is able to clearly separate subjects
belonging to different clinical groups, whereas for some
other cases, subjects scores are wrong or close to 0.5.
There are incorrect scores especially for the seizure-free
class. Specificity, which shows the discriminative power for
negative subjects, is lower than sensitivity. This might be
due to the fact that many seizure-free subjects are newly
recruited and might develop seizure in the next months.

4. DISCUSSION

We used VBM to investigate changes in MRI voxel inten-
sities between two clinical groups: TBI subjects who have
developed epilepsy and TBI subjects who have not devel-
oped epilepsy. We found statistically significant between-
group differences in 3645 voxels. Anatomical regions cor-
responding to the significant voxels are in accordance with
the findings found in literature. Indeed, Irimia et al. (2017)
found correlation between post-injury seizure occurrence
and tissue loss in middle frontal and postcentral gyri.
Riederer et al. (2008) carried out a VBM analysis to study
brain changes associated with temporal lobe epilepsy find-
ing reduced gray matter volume in frontal regions, the
cerebellum, the left superior temporal gyrus and the post-
central gyrus. In Mueller et al. (2014) and Englot et al.
(2018) the role of brainstem structural and functional
networks in epilepsy is underlined. Zhang et al. (2012)
obtained postcentral gyrus and orbital part of inferior
frontal gyrus as significant regions for the classification of
normal controls and epileptic patients. Zhou et al. (2019)
found disruption of cerebellar-cerebral functional networks
in right temporal lobe epilepsy. Salari et al. (2019) studied
the brain alterations in epileptic patients compared with

normal adults and observed significant changes in right
cerbellar volume, left cerebellum cortical thickness and
some cerebellar lobules. In addition, we used a NN clas-
sifier to assess the effectiveness of these significant voxels
in discriminating the two groups. Our machine learning
system allowed the distinction of the two groups with an
AUC of 0.62 4+ 0.03. Classification results seem to reflect
GCS overlap of the the two subject populations that share
a common area of approximately 80% resulting in a 40%
chance of misclassification. Therefore, future studies could
alm to examine how GCS correlates with classification
scores and how the classification performances change if
clinical scores are added to the machine learning model.
To the best of our knowledge, this is the first work
that uses a VBM approach to distinguish seizure-free and
seizure-affected clinical groups. The proposed method un-
derperforms the approaches used in Garner et al. (2019a);
La Rocca et al. (2019) where functional and ROI volumes
were used to characterize patients who have developed
seizures. Nevertheless, our approach can detect subtle
changes (i.e. in regions of cerebellum) that were not found
with the other two previously cited ROI-based approaches.
Thus, even in PTE field as well as in other applications
Suk et al. (2014); Amoroso et al. (2018b), VBM has been
proved to be very useful to detect MRI alterations that a
ROI-based approach is not sensitive to. In upcoming years,
EpiBioS4Rx will enroll up to 300 patients, so we expect to
improve classification performances as, even though sam-
ple size is sufficient to detect some significant differences
across the cohort, VBM needs a larger sample of subjects
to be less affected by the registration noise. The main
purpose of this work is not to give the best performance in
the prediction of seizure free and seizure-affected subjects
but to investigate the potential of the VBM approach in
PTE field with the view to use it in combination with other
approaches to improve classification performances. Clini-
cal score distributions show that the NN works properly
in most cases but fail for some other cases. Additionally,
EpiBioS4Rx will continue following subjects for two years
after injury, which may address issues with potential false
detections as those shown in Fig. 5. In the future, it
would be interesting to investigate if false positives are
TBI patients who have developed immediate seizures but
will not be diagnosed with PTE, and if false negatives are
TBI patients recently enrolled who will develop seizures in
the upcoming months.

5. CONCLUSION

Stochastic processes, random field theory, and machine
learning techniques were used to investigate the efficacy
of VBM to detect subtle structural brain changes between
subjects who had at least one seizure after TBI and sub-
jects who had no seizures since the TBI occurred. The
VBM approach demonstrated the ability to find statisti-
cally significant differences between the two clinical groups
in brain regions, which are in accordance with the liter-
ature about seizure development. In addition, the signifi-
cant voxels obtained with VBM allowed the discrimination
of the two clinical groups with an accuracy of 60% and
an AUC of 62%, proving that VBM in combination with
machine learning techniques can be a promising method
to predict PTE. In the upcoming months, enrollments
of new TBI patients will allow us to make full use of
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VBM capabilities and have conclusive results about the
predictive power of the proposed approach. The brain
is considered to be one of the most complex stochastic
systems, and this research provides an opportunity for
the control community by bringing together stochastic
systems, stochastic control, stochastic modeling, and data
science with the goal to characterize seizure development
after a TBI.
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