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Abstract: This article considers the real-time optimization under uncertainty of a compact
reconfigurable system for on-demand continuous-flow pharmaceutical manufacturing. Self-
optimizing control is employed, which optimizes operation in the presence of uncertainty by
controlling a carefully chosen combination of measurements to a constant setpoint. The method
is applied to a simulated plant based on the physical process. The closed-loop simulations
indicate that this simple policy is able to maintain the process operation close to optimality
despite disturbances, sensor noise, and parametric model uncertainty.
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1. INTRODUCTION

Pharmaceuticals have been traditionally manufactured us-
ing batch processes. Challenges facing the pharmaceutical
industry such as long production times and potential drug
shortages often trace back to limitations of batch manufac-
turing, which have motivated efforts to develop continuous
manufacturing processes (Myerson et al., 2015). Com-
pact reconfigurable systems for on-demand continuous-
flow pharmaceutical manufacturing (Adamo et al., 2016)
have been designed that include all of the molecular syn-
thesis and separation steps for drug manufacturing. Such
systems can respond to sudden changes in demand, such
as in cases of epidemics or pandemics, by manufacturing
drugs on-demand at high volumetric efficiencies (Adamo
et al., 2016).

This article considers the design of a self-optimizing con-
trol system for the modular drug manufacturing platform
of Adamo et al. (2016) for optimizing plant operation in
the presence of different forms of uncertainty. In past work,
a model predictive control-based plantwide control system
(Nikolakopoulou et al., 2019) was designed for controlling
overall yield and production rate while satisfying opera-
tional constraints.

In pharmaceutical processes, the effects of model uncer-
tainty (both in the structure and the parameters), sensor
noise, and process disturbances such as exogenous changes
in temperatures and concentrations must be considered.
An important point of departure from deterministic op-
timal control problems is that our goal is not to opti-
mize over control sequences, but over control policies or
feedback control laws. A control policy is a function that
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determines a feasible control action given the state of the
system at a point in time. There are two fundamental
strategies for designing policies (Powell, 2019):

e Policy search, where an objective function is used to
search within a family of functions to find the function
that works best.

e Lookahead approximations, where the policy is con-
structed now by approximating the impact of a con-
trol action on the future.

Either approach can produce optimal policies, although
this is rare. The reason is computational; a stochastic
dynamic program can rarely be solved to optimality. How-
ever, these two strategies are the basis for 4 universal
approximations (policy function, cost function, value func-
tion, and direct lookahead) that cover all of the approaches
reported in the literature (Powell, 2019). Economic model
predictive control is a policy based on direct lookahead
approximation that is receiving much research attention.
Alternatively, this article explores the potential of an
approach to a policy search known as “self-optimizing
control” which, despite its ease of implementation, has
never been applied to pharmaceutical manufacturing.

This paper is organized as follows. Section 2 presents
self-optimizing control and the algorithms. Section 3 in-
troduces the case study, which is the continuous-flow
synthesis of atropine. Section 4 contains the results and
discussion. The article concludes in Section 5.

2. SELF-OPTIMIZING CONTROL

Self-optimizing control is a policy search approach which
optimizes the process operation in the presence of uncer-

11772



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

tainty by controlling a carefully chosen combination of
measurements to a constant setpoint (Morari et al., 1980;
Skogestad, 2000). The control architecture when applying
self-optimizing control is illustrated in Fig. 1.
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Fig. 1. Block diagram of a self-optimizing control archi-
tecture. The variables in the diagram include dis-
turbances d, true measurements g, sensor noise n,
measurements corrupted by noise y,,, combination
matrix H, controlled variables ¢, setpoints ¢®, error
e, and manipulated variables .

Given this structure, the problem of optimizing over poli-
cies is simplified to the search for the best combination
matrix H and vector of setpoints ¢®. These two parameters
define the self-optimizing control block. The design of the
feedback controller (e.g., decentralized PID controllers or
MPC) is considered separately. The search for the param-
eters H and ¢® can be combined into one problem by ma-
nipulating notation. Defining the augmented combination
matrix by

H=[-c" H| (1)
and the augmented vector of measurements by
gt =y, (2)

the problem of controlling ¢ = Hy to an arbitrary setpoint
c® is equivalent to controlling ¢ = Hy to a zero setpoint.
Therefore, an equivalent formulation of the problem is
to find the best augmented combination matrix H. This
problem is considered in the remainder of this article and,
to simplify notation, the augmented variables are written
without the tildes.

Several model- and data-based methods have been devel-
oped to search for the best combination matrix H effi-
ciently. A comprehensive survey on self-optimizing control
methods is available (J&schke et al., 2017).

2.1 A global self-optimizing control algorithm

Consider two different forms of uncertainty: sensor noise
n and disturbances d. Other types of uncertainty such as
parametric model uncertainty can be effectively modeled
as disturbances within this framework.

In self-optimizing control, a loss function is used as a
performance criterion to evaluate different combination
matrices H. This loss function is defined as the difference
between the cost function at steady-state resulting from
using a particular H and the optimal cost function at
steady-state corresponding to a particular disturbance:

L(n,d,H) = J(n,d, H) — J°P"(d). (3)
Assuming a given probability distribution for the sensor
noise and disturbance realizations, the average loss can be
computed as

L..(H)=E, 4[L(n,d, H))]. (4)

Therefore, the combination matrix H that minimizes the
average loss can be obtained by solving

mhirn Lav(H) (5a)
sty = flu,d), (5b)
H(y+n)=0, (5¢)

where the constraints are the process model and the feed-
back control effects, respectively. This optimization is not
tractable. A convex approximation used in the literature
to simplify the optimization linearizes the process model
around a nominal operating point and uses a second-order
Taylor expansion to approximate the loss. Then the loss
can be written as an explicit function of H. The approaches
based on these simplifications are collectively known as
“local methods”, because the policy performance is lim-
ited to a neighborhood of the nominal operating point.
More recently, “global methods” that do not require the
linearization of the process model around a nominal op-
erating point have been considered. Instead, Monte Carlo
simulation is used to approximate the nonlinear operating
region. This article uses a global self-optimizing control
algorithm proposed by Ye et al. (2015). An outline of this
algorithm is:

(1) Sample the disturbance space D via Monte Carlo
simulation, generating a sequence of N disturbance
scenarios: d;, ¢ =1,...,N.

(2) For each disturbance scenario d;, compute the corre-
sponding optimal vector of measurements yfpt. Then,
construct the intermediate matrices:

(W) " L
Y = , Y= |VN |, (6)
()" W
where W2 = E[nn'] is the covariance matrix of

Gaussian sensor noise.

(3) Evaluate GY¥ = dy/du and Jol? = (02J/0u?)Y/? at a
chosen reference point (e.g., at the nominal operating
conditions).

(4) Formulate the convex optimization in terms of the
approximated average loss L,y :

min Loy (H) = SIVETE (7a)
st. HGQY = JY/? (7b)

(5) The optimal H that minimizes L., can be analytically
computed by

H' ='V)lqvay (v Ty)lqv)~tai2 (8)
2.2 Selecting subset of measurements

In plants with a large number of potential measurements,
good performance can often be obtained by selecting
only a subset of measurements. The performance does
not improve linearly with the number of measurements
included in the combination matrix H, but follows a
Pareto front. As such, there is a point where a further
performance improvement is marginal in relation with the
cost of adding a new sensor (Kariwala et al., 2008).

The problem of searching over subsets of measurements is
a combinatorial optimization that has been addressed by
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two different approaches: tailor-made branch-and-bound
algorithms (Kariwala and Cao, 2010) and reformulation as
a mixed integer quadratic optimization problem (MIQP)
and then applying standard MIQP solvers to find the best
subset of measurements (Yelchuru and Skogestad, 2012).
This article uses this second approach to reformulate the
global self-optimizing control problem introduced in (7) to
search over subsets of measurements.

To use a standard MIQP solver such as CPLEX or Gurobi,
first reformulate the combination matrix

—ci hn hin,
H= : : (9)

S
_Cnu hnul hnuny

by stacking the rows of H in a column vector,

-

hs = [—¢i har- - han,, - —Cp, b1 hogn,]  (10)
Restructuring the other matrices in a similar way results
in a vectorized version of problem (7):

r%in hi Yshs (11a)
5

st. GYhs = js, (11b)

where GY, js, and Y are the restructured versions of GY,
Juy and Y, respectively. Problem (11) can be reformulated
as a mixed integer quadratic program by adding a con-
straint to limit the number of measurements (number of
columns in matrix H) from which the optimizer can select
the best subset. These constraints can be implemented
using big-M constraints. Define a vector of binary variables

y O-ny} , 05 = {Oa l}a (12)
where the first element is 1 because the first column of the
augmented combination matrix introduced in (1) contains
the setpoints of the controlled variables, which are always
selected. For the rest of the columns in the combination
matrix, o; = 1 if measurement j is selected, and o; = 0
otherwise. The constraint on the binary variables can be
written as

o= [1,01,

Po =, (13)
where P = l]—my is a n, dimensional vector of ones, and s
is the number of measurements we want to include in the

combination matrix.

The MIQP problem for selecting the optimal combination
matrix with a subset of s measurements can be written as

2}12 h§ Yshs (14a)

st. GYhs = js (14Db)

Po=s (14c¢)

o =1 (14d)
7M0'j§hij§MO'j VJG{L,le}

Vie{l,....,n,}  (14e)

hs € R (14f)

o€ {0,1}. (14g)

The vector M € R’}* of positive constants used in the big-
M constraints ensures that if o; = 0, the corresponding
column in the H matrix is also zero, and therefore the mea-
surement j is not selected. However, selecting appropriate
values for M is not straightforward. A large value implies a
large upper bound on the elements of H and therefore the

Table 1. Chemical species in the simulation.

Chemical species Chemical formula  Notation
Tropine CgH15NO Cq
Dimethylformamide CsH7NO Co
Phenylacetylchloride ~ CgH7ClO Cs
Intermediate C16H21 O35 NHCI1 Cy
Formaldehyde CH>0O Cs
Methanol CH3OH Ceg
Sodium hydroxide NaOH C7
Water H>O Csy
Atropine C17H23NO3 Cy
Apoatropine C17H21NO2 C1o
Tropine ester C16H21 02N C11
Sodium chloride NaCl Ci2
Buffer NH4Cl1 Cis
Toluene CrHg Ci4q

computational load can become very high, while a small
value may result in a falsely active constraint and therefore
a suboptimal solution. One strategy is to solve the problem
with increasing values of M iteratively, until no changes
are seen in the solution. Alternatively, it is also possible to
replace big-M constraints for indicator constraints:
0 :0:>hij =0 Vje {1,...,ny},i€ {1,...,nu}.
(15)
To select more than one subset of measurements for further
validation, adding the constraint

("ol <s Vie{2,...,m}. (16)
to the problem ensures that the best m subsets of measure-
ments with least losses in increasing order are selected.

3. APPLICATION: CONTINUOUS-FLOW
SYNTHESIS OF ATROPINE

This article uses a first-principles model of the continuous-
flow synthesis of atropine (Nikolakopoulou et al., 2020),
which is an active pharmaceutical ingredient. The pro-
cess flowsheet in Fig. 2 shows the manipulated vol-
ume flowrates, reactor temperatures, and unit operations,
which are three mixers (Mi), three tubular reactors (TRi),
and a liquid-liquid separator (LL). Each unit operation is
described by mass balances, reaction stoichiometry, and
reaction kinetics. The energy balances are not modeled
since the reactors can be kept at the desired temperature
setpoint using regulatory level controllers. The setpoint
temperature can be achieved rapidly due to the high
surface-to-volume ratio of the tubular reactors.

The six feed streams to the process are:

Tropine in dimethylformamide (DMF, ¢;)
Phenylacetylchloride (g2)

Formaldehyde (g3)

Sodium hydroxide (NaOH, ¢4)

Buffer solution (gs)

Organic solvent (gs)

Each stream contains up to 14 chemical species (Table 1).
Atropine (Cy) is produced according to the reaction set:

Ci+C5 = Cy (17a)
Cy+C7 = Cs+Ch1 + Cho (17b)
Cs + C11 — Co (17¢)
Cs +C11 — Cs+ Cho (17d)
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Fig. 2. Process flowsheet of the continuous-flow synthesis of atropine showing three mixers (M), three tubular reactors
(TR), and one liquid-liquid separator (LL). The volume flowrates of the feed streams are ¢; and the reactor

temperates are indicated by T;.

Table 2. Potential process measurements.

Index Measurement

1-2 Concentration of C; at the outlet of TR1, i = {1, 3}
3-10 Concentration of C; at the outlet of TR2, i = {1,3,5,7,9,10,11,12}

11-18  Concentration of C; at the outlet of TR3, ¢ = {1,3,5,7,9,10,11,12}
19-22  Concentration of C; in LL (aqueous phase), ¢ = {1,7,9,12}

23-26  Concentration of C; in LL (organic phase), ¢ = {3,5,10,11}

27-30  Concentration of C; in the feed streams q1—4, © = {1,3,5, 7}

31-33  Volume flowrates of TR1, TR2, and TR3

34-35  Volume flowrates of aqueous and organic phases in LL

36-39  Volume flowrates of feed streams q1_4

40-42  Temperatures of TR1, TR2, and TR3

Table 3. Expected values (u) and standard
deviations (o) of disturbances.

Disturbance  Unit w o
Mg, mol/L 2 0.0l
Mc, mol/L 4 0.01p
Ty K 373.15 1

Ts K 373.15 1

T3 K 323.15 1

k1 mol/(mL - min) 34206  0.05u
ko mol/(mL - min) 10000  0.05u
k3 mol/(mL - min) 24 0.054
ka mol/(mL - min) 43599  0.05u
Ea J/mol 1000 0.05u
E a9 J/mol 100 0.05u
Eas J/mol 1819 0.05u
Eaq J/mol 26207 0.05u
log(Dc,) - ) 0.5

The process has 42 measurement candidates (Table 2),
which include (1) concentrations of chemical species in-
side the reactors, liquid-liquid separator, and in the feed
streams, (2) temperatures in the reactors, and (3) volu-
metric flowrates in the feed streams.

The manipulated variables are the volume flowrates of the
feed streams containing reactants: ¢;, i = {1,2,3,4}. Feed
streams in the third mixer containing solvents are assumed
to remain constant with nominal values of ¢5 = 0.2
mL/min and ¢ = 0.5 mL/min. The volumetric flowrates
need to satisfy the constraints:

0<g¢ <4 mL/min fori={1,2,3,4}. (18)
Parametric model uncertainty is considered in the separa-
tion coeflicient of atropine D¢, in the liquid-liquid separa-
tor and in the reaction kinetic parameters (pre-exponential
factors k; and activation energies Ey;). Disturbances are
the molarity of components C; and C7 in the feed streams
and the reactor temperatures. The parametric uncertain-
ties are assumed to be normally distributed with mean and
standard deviations (Table 3). Sensor noise is modeled as
Gaussian noise with zero mean and standard deviations
of 2.5% of the nominal value for volume flowrates and
concentrations, and 1K for temperatures.

15 x1073
° © - 1° best subset
o 4r ."-. - 2° best subset |
N 4 @ 3° best subset
|>qb 131 . 4
2 i
2 i
12+ ¢ 1
@ L
Ed !
g 11 |
5 .
i S
= 10 . 1
£ o,
w9l e, 4
2 S,
2 “.‘0«.._
L 0o 1
< 8 $®000000000000000004
7L L L L L L L
5 10 15 20 25 30 35

Number of measurements, n,

Fig. 3. Approximated average loss as a function of the
number of measurements.

The objective function is to maximize is the E-factor,
which is the mass of waste per mass of product.

4. RESULTS AND DISCUSSION
4.1 Screening of self-optimizing controlled variables

The best 3 measurement subsets with the least losses
in increasing order were computed for each number of
measurements, ranging from 4 to 42, by using the mixed
integer quadratic programming formulation in Section 2.2.
The optimization was solved using the cplexmigp function
in CPLEX v12.8.0.

The Pareto frontier corresponding to the approximated
average loss as a function of the number of measurements
in shown in Fig. 3. The indices of the optimal measurement
subsets are listed in Table 4.

4.2 Steady-state validation using the nonlinear model

The measurement subsets screened by the MIQP algo-
rithm were evaluated using the original steady-state non-
linear model. Each set of controlled variables was tested in
closed-loop simulations over 100 scenarios of normally dis-
tributed disturbances and sensor noise realizations, with
mean and standard deviations in Section 3. The average
losses as a function of the number of measurements in-
cluded in the control structure are in Fig. 4. The measure-
ment subsets with the least average losses are in Table 5.

Deciding the number of measurements to include in the
control structure is a tradeoff between the reduction in
the average loss and the increase in structure complexity
and investment cost that comes with the addition of more
sensors. From the average losses shown in Fig. 4, a control
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Table 4. Measurement subsets with the least
approximated average losses.

Ny Measurement subset Lay (x1073)
4 [13, 19, 20, 26] 14.427
[ 3,13, 20, 26] 14.456
(11, 13, 20, 26] 14.457
5 (13, 17, 19, 20, 36] 12.990
(11, 13, 17, 20, 36] 12.992
[ 3,13, 17, 20, 36] 12.994
6 [ 7,13, 19, 20, 21, 26] 11.725
[ 7,11, 13, 20, 21, 26] 11.733
[ 3, 7,13, 20, 21, 26] 11.734
7 [ 7,13, 19, 20, 21, 24, 26] 10.690
[ 7,11, 13, 20, 21, 24, 26] 10.696
[ 3, 7,13, 20, 21, 24, 26] 10.698
42 all measurements 7.7056
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Fig. 4. Average losses as a function of the number of mea-
surements for 100 scenarios of normally distributed
disturbances and sensor noise realizations.

Table 5. Subsets of measurements selected by
the global-self-optimizing control algorithm.

ny Measurement subset Lay (x1073)
4 [13, 19, 20, 26] 45.428
5 [13, 17, 19, 20, 36] 43.177
6 [ 7,13, 19, 20, 21, 26] 26.753
7 [ 7,13, 19, 20, 21, 24, 26] 25.654
8 [7, 13,17, 19, 20, 21, 24, 36] 25.033
9 [ 7,12, 13,17, 20, 21, 23, 24, 36 23.614
10 [ 7,12, 13,17, 20, 21, 22, 23, 24, 36] 22.717
42 all measurements 20.889

structure composed of 6 measurements gives a reasonable
tradeoff between these two objectives. The combination
matrix associated with this control structure is:

—1.65 —1.39 0.29 —69.9 2.88 1.10 2.15
H— —2.15 —1.57 0.79 —38.9 15.5 1.32 1.87
~ |—1.90 —1.21 1.55 —8.44 10.6 0.98 0.80

—3.18 —2.25 1.65 —12.9 15.0 1.84 2.45

Figure 5 shows that the self-optimizing control structure
composed of 6 measurements (in blue) achieves near-
zero losses compared with an open-loop policy of keeping

(19)

3.0

b4 @ Open-loop operation
H @ Self-optimizing control

Uncertainty scenario

Fig. 5. Losses for 100 scenarios of normally distributed
disturbances and sensor noise realizations obtained by
self-optimizing control (blue) and open-loop operation
(red).
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Standard deviation, o

Fig. 6. Sensitivity of the loss for different disturbances.

the nominally optimal value of the manipulated variables
constant in the presence of disturbances and sensor noise.

The disturbance with the highest impact on the loss is
the parametric model uncertainty in the distribution co-
efficient of atropine, followed by the activation energy of
the fourth reaction which controls the production of apoa-
tropine (undesired byproduct). This relative importance is
illustrated in Fig. 6, which shows the loss as a function of
the standard deviation of the different disturbances.

4.8 Dynamic simulation

The proposed control structure was validated using closed-
loop dynamic simulations. Initially, the system is operated
at the nominal conditions. Subsequently, for every 1000
min, the operating conditions in the plant change due
to the impact of disturbances. The three disturbance
scenarios were generated by Monte Carlo sampling given
the standard deviations in Table 3. In the simulation,
normally distributed sensor noise is assumed with zero
mean and standard deviations of 2.5% of the nominal value
for the concentration measurements.

Decentralized PI controllers were used to track the self-
optimizing controlled variables to a constant setpoint of
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Fig. 7. Dynamic closed-loop simulation of the self-
optimizing control structure in the presence of dis-
turbances and sensor noise. J is the cost function (E-
factor), ¢; are the controlled variables, and u; are the
manipulated variables.

zero. The pairing was based on the steady-state relative
gain array (RGA) and tuning based on the SIMC method.

Figure 4.3 shows the cost function, controlled variables,
and manipulated variables in the closed-loop dynamic sim-
ulation. The cost obtained by tracking the self-optimizing
controlled variables to constant setpoints followed very
closely the optimal steady-state cost for each disturbance
scenario without the need to reoptimize the setpoints when
disturbances occur.

5. CONCLUSION

This article demonstrates the use of self-optimizing con-
trol in a continuous pharmaceutical manufacturing plant.
Uncertainty is handled by controlling a carefully chosen
combination of measurements to a constant setpoint. The
method was applied to a simulated plant based on the
continuous-flow synthesis of atropine. A mixed integer
quadratic program based on a global self-optimizing con-

trol algorithm was solved to find the best self-optimizing
variables. The closed-loop simulations indicate that this
control policy is able to mantain the process close to opti-
mality despite disturbances, sensor noise, and parametric
model uncertainty.
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