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Abstract: This paper describes an online laboratory system prioritizing modular and gener-
alised solutions. The system provides a unified user interface to access, manage and control
remote experiments. At the same time it does not put up restrictions limiting usable control
algorithms or even simulation environments. Several connected devices are integrated with the
use of Matlab and Scilab software so users can create their control block diagrams in either
Simulink or Xcos. It is even possible to declare variables within these diagrams and then initialize
them through the system’s user interface. A set of commands was selected to represent the
possible operations a device can implement. This serves to optimize the communication, since
each of these commands is interpreted by a specialized python or shell script transferring all the
user inputs and other necessary data either directly to the device or to a running instance of a
simulation environment. System’s functionality is demonstrated on a remote experiment based
on levitating ball in a vertical tube. This method of control makes the system highly scalable
as the new experiments can be added while the system is deployed.

Keywords: Virtual and remote labs; Internet based teaching of control engineering; Control
education using laboratory equipment.

1. INTRODUCTION

Online control laboratories make the educational process
much easier. With the advances of recent years they
are becoming more and more versatile in the field of
control algorithms. Enabling the use of various simulation
environments lets the users experiment and learn new
software solutions.

It is also imperative that the system is easily scalable.
Adding new remote experiments or adjusting functionality
is an integral part of a well-functioning online laboratory.
The connected devices should not be limited to a single
type of experiment. Utilizing their whole potential max-
imises their educational effectiveness. Finally, a unified
interface to access multiple different remote experiment
must be provided to assure a seamless user experience.

Following the results and applications in the field of the
remote laboratories one can notice that there were already
initiatives to build a remote lab management system.
See e.g. (Stiubiener et al., 2006), (Harward et al., 2008),
(Hardison et al., 2008), (Orduña et al., 2015), (Henke
et al., 2016), (Uhlmann et al., 2018) and (Galan et al.,
2019). They have various functionalities and various levels
of generality. Our aim was to build a system enabling scal-
ability and modularity in the used hardware, simulation
environments and control algorithms.

An emerging trend in remote experiment development is
the utilization of small singleboard computers such as
? This work has been supported by the Slovak Grant Agency, grant
VEGA No. 1/0733/16 and the grant APVV SK-IL-RD-18-0008. This
support is gratefully acknowledged.

Raspberry Pi or Beaglebone Black. They have been im-
plemented in the online laboratory UNILabs (Sáenz et al.,
2015). This approach, while energy and cost efficient, did
not meet the necessary hardware requirements to run soft-
ware with such high demand for resources as MATLAB at
sufficient speed. At this moment, it only works with single-
purpose experiments, which would defeat the objective of
generalisation for this architecture.

2. MODULAR LABORATORY

Scalability of a system goes hand in hand with its modular-
ity. Augmentation and expansion of an online laboratory
often requires downtime. If the system is assembled from
discrete modules on both the hardware and software levels,
this issue can be resolved.

2.1 Software modularity

This paper describes design choices made in a specific
online laboratory implementation described in (Rábek and
Žáková, 2017). On the software level, the online labora-
tory system consists of several modules, each responsible
for a specific functionality such as reservation system or
management of uploaded control algorithms. The overall
web application is built with Laravel framework. Ping-
pong/modules 1 is a package developed for this frame-
work to help maintain larger and more complex applica-
tions. Each module contains its own separate model-view-

1 Currently this package is no longer maintained and was re-
published and re-organised as nwidart/laravel-modules, which now
also supports tests.
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Fig. 1. System architecture depicting multiple devices
connected to dedicated experiment servers.

controller implementation and can be enabled or disabled
without influencing the overall functionality.

2.2 Hardware modularity

Hardware modularity stems from the chosen system archi-
tecture. A single server with a web application written in
PHP running on it acts as a central node for the whole
system. Users only directly access this server, which then
relays their requests to dedicated servers for each of the
connected devices to this online laboratory system (Fig. 1).
It is still actually possible to access one of these dedicated
servers directly, but that is only for development and
debugging purposes and not intended as standard mode
of operation.

The biggest challenge of achieving true hardware modu-
larity is creating a unified process of integrating new ex-
periments into the system. Since each experiment consists
of a specific device and a dedicated server, an interface
that facilitates communication between them has to be
established. The system needs to treat these devices as
black boxes in order to simplify their interactions. This
proves to be rather difficult, since the connected devices
differ from one another in many ways, such as number
of inputs and outputs or even communication protocols.
The only solution that preserves the freedom to integrate
diverse range of experiments and at the same time access
them from a unified interface is to implement a custom
middleware which resolves these differences and bridges
the system together.

3. UNIFIED INTERFACE

The server connected directly to a device acts as an
interface between it and the central web server. The
central server treats all the remote experiments equally
and it is the experiment server’s job to translate the
received requests to commands for the device. Reading
and formatting the output data is also handled by this
server.

3.1 Commands

To control the connected device and its processes, four gen-
eral commands have been chosen to represent all necessary
actions that might need to be taken during the runtime of
an experiment. These commands are:

• Init.
• Start.
• Stop.
• Change.

These commands are represented as executable scripts.
Previously they were shell scripts but on newly connected
devices, the Python programming language become the
norm.

Each combination of a specific simulation environment and
a device is handled by a complete set of these commands
(with the exception of the optional init command). The
PHP application running on the experiment server is
capable of generating template files, which must then be
altered specifically for the desired pair. Paths to these
scripts are known by the web application. Depending on
the type of experiment issued by the user, a correct script is
executed and thus the experimentation process can begin.

Init The init command is the only optional command.
This means, that it does not need to be necessarily
implemented to manage the device’s initialisation process,
which might not exist. On the other hand, some devices
require some time to initialize before they are able to
perform the experiment. Generally, no arguments are
necessary to issue this command.

Start This command starts the experiment. The input
parameters it requires depend on the device, selected
simulation environment and even on the control algorithm.
The first task of the script is to either open the simulation
environment or find a running instance and connect to it.
After a connection is established, all the parameters are
declared and initialized. Finally the experiment is started.

If the experiment is running in an open-loop mode, there
is no need to launch it through the simulation environ-
ment. In this case, this script also takes over some more
functionality as communication with the device and data
collection.

Stop As the name suggests, this command terminates
the experiment if for whatever reason it is decided, that
the experiment should no longer be running. No input
parameters are needed for this command.

Change The change command is quite similar to the
start command. It changes the values of the variables de-
termining the experimentation process during its runtime.
Usually the input parameters are the same ones as for the
start command.

4. COMMUNICATION AND DATA ACQUISITION

The complex online laboratory system is composed of mul-
tiple different layers that all communicate with each other
(Fig. 2). Every one of them functions a little differently.
Therefore, supplying the data in correct format is crucial.

4.1 Simulation Environments

Various simulation environments were successfully imple-
mented to run on a single experiment server. Their main
function is to provide a workspace to design and develop
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control algorithms. These are then uploaded to the central
web server. When an experiment is about to be exe-
cuted, the dedicated server accesses the central storage
and downloads a file containing the control algorithm. The
appropriate start script loads the contents of the file to the
environment and the experiment begins.

The downloaded file needs an appropriate extension in
order to be read correctly by the corresponding software.
This extension is not yet known by the experiment server
at this point in the execution cycle since it treats all ex-
periment requests the same way. The filename is generated
randomly and then later a proper extension is appended by
the executable script. As soon as the web server receives
a notice that the experiment is finished, this temporary
file is deleted so it does not unnecessarily fill up the hard
drive.

Since the version R2015b Matlab software provides a way
of creating a so called shared engine, which actually is
a shared session that can be utilized by other processes
(The MathWorks, 2015). This greatly improves the sys-
tem’s performance since it reduces the time needed for the
software’s initiation. This means, that a single instance
of Matlab is at all times running in the background and
handles all experiment requests. A python library, that
facilitates the connection exists and was implemented to
the system.

How these software solutions communicate with each other
can be seen in Fig. 3.

Still, there are several restrictions using this method.
The owner of the Matlab shared engine process must
be the same user as the owner of the process trying to
connect to it. Other difficulty is that some methods such as
”set param” can only be executed from within a software
instance running in a desktop mode and not simply by a
console application (The MathWorks, 2006).

To interface the device to the software two approaches can
be explored. The first is to create an s-function, which as a
single block represents the connected device. Other, more

Fig. 2. Communication among system layers.

Fig. 3. Diagram of the functions and interfaces of a
dedicated experiment server connected to a device.

generalised approach, is to use default blocks representing
the serial interface, assuming the device communicates
through USB or serial ports. While more universal, this
method is less flexible to more unorthodox or legacy
communication standards.

The Simulink ”serial receive” block is designed to parse
and interpret data obtained via the serial port. It is also
possible to define the expected data structure of commu-
nication frames. As the frame header must be a character
sequence that can not be found within the frame’s payload,
this greatly limits the variability of data that is sent by the
device. Furthermore, even though the block is intended for
binary data acquisition, the header can only be composed
of printable ASCII characters, meaning that only values
ranging from 32 (space) to 126 (˜) can be used. The
restrictions placed on the frame terminator are greater
still. There are only five specific options: Line feed (’\n’),
carriage return (’\r’), combination of the two (’\r\n’), null
(’\0’) or no terminator at all. On the other hand, this
block offers a lot more functionality out of the box, such as
sampling time definition, simulation blocking or handling
of unavailable data state (The MathWorks, 2008). To send
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data back to the device a separate ”serial send” block is
used with similar properties.

4.2 Data collection

Each device is unique and can use a completely different
protocol to communicate. Some may provide the output
data on a request-response or polling bases while others
can send them according to the predetermined sampling
frequency. Other than that, the simulation environments
use different forms of data storage. Characteristics such
as these may pose a problem for an online laboratory
system. To ensure compatibility, a persistent file is created
by the web application as soon as the experiment request is
received. It is identified by the users id followed by a string
of numbers generated from the current time and date to
prevent duplicate file names. This filename is passed along
the experiment parameters to the executable script and a
Node.js server running in the background.

Depending on the issued experiment, the script can for-
wards this filename to the simulation environment along
other experiment parameters. In case the experiment runs
in open-loop mode and does not require feedback, the data
acquisition is among other things handled by this custom
script.

As soon as the experiment begins, the Node.js server is
informed via Redis in-memory data structure store. When
notified using the implemented publish/subscribe messag-
ing paradigm, the Node.js server establishes a websocket
link straight to the connected user. Subsequently, the file is
periodically read in a predetermined time interval and its
contents are transmitted via created websocket identified
by user’s unique id.

The contents of this log file are dictated by the output data
values provided by the device. The names of the physical
units which are measured during the experiment are also
defined within a separate configuration file.

4.3 Accessing the Data

The output data stream via the websocket is established
right as the first values are read from the device and
written to the log file. A JavaScript library HighCharts
generate an interactive chart that is adjusted and redrawn
with every received datapoint.

Alternatively, after the experiment is finished, the contents
of the log file are sent as a HTTP request to the central
web server, which to this point did not receive any data
other than experiment status confirmations.

This whole process is depicted in Fig. 4 in great detail.

A report is generated from the gathered measurements and
saved to the database. It can be accessed, viewed and even
downloaded in a .csv format.

5. EXPERIMENT PARAMETERS

The experiment is defined by its parameters. Users require
the ability to affect the behaviour of connected devices.
The definable characteristics range from experiment du-
ration to custom variables declared within the scope of

uploaded block diagrams. All of them should be easily ac-
cessible and appear the same even though they are stored
on different levels within the application and influence
various aspects of the overall system and its parts.

5.1 Parameter Categories

Three separate categories of parameters were defined ac-
cording to their function and area of effect.

General parameters describe behaviour of every exper-
iment and thus must always be defined. These are the
experiment duration or its sampling rate. Identification
parameters such as IP address of the dedicated experiment
server or selected simulation environment also fall into
this category. They are therefore hard coded within the
application.

Device parameters are identical for every experiment
that can run on a particular device. These might represent
systems disturbance variables. They are stored in config-
uration files on the experiment servers. Their template
is automatically generated once a new experiment server
application is installed and a device is added using the
provided user interface. These files are later modified by
the experiment developer in order to complete the device
integration. The stored data contain the parameter name,
display label presented to the user, data type and optional
default or placeholder value. There is also a possibility to
predetermine only a set of possible values if there is only
a limited number of options to choose from.

Scheme parameters represent all variables declared in
the uploaded block diagrams. A good example are the
separate P, I and D values in a PID controller. Created
parameter names are stored in the central web server’s
database and can be set by the owner of the particular
simulation scheme. Similarly as the device parameters,
these can be of different data types and have placeholder
values assigned to them. They might also be presented in
a form of a combo box with predefined options.

5.2 Control Panel

After a reservation for a specific device was made, the
user can access its control panel. Here, users assign values
to all of the parameters. The presented form is gener-
ated specifically for each experiment. The user selects
a supported simulation environment and chooses one of
the device instances if more than one were reserved for
that exact time. After filling in all the values for the
general and device parameters, a simulation scheme can be
chosen. Depending on the selected device and simulation
environment, a possible set of options is presented to the
user. Upon selecting the preferred combination from the
available options, the rest of the form is rendered according
to the parameters tied to this specific scheme or block
diagram. This way the user is presented with a unified vi-
sual design for all parameters, even though they determine
different aspects of the experiment. After pressing the start
button, a notification appears informing the user that the
experiment was issued successfully if no problems during
the execution occurred. A chart displaying the resulting
data begins to render as soon as the device responds with
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first measurements. With new data arriving periodically
throughout the duration of the experiment, the chart is
redrawn so it contains all available information.

5.3 Controller Management

The user interface to define the control algorithms was also
designed and implemented in such a way, so that it appears
identical regardless of selected device and even simulation
environment. As it was previously stated, the central
web server does not differentiate between implemented
software solutions and even connected hardware devices.

Here users with administrative privileges create, modify
and delete control algorithms. First a device type and
a simulation environment pair is chosen. Then the user
selects a controller file to be uploaded to the server and
names the controller. There is also an option to provide a
detailed description and even an image to better explain
the block diagram. Finally, if necessary, the simulation
scheme variables are introduced to the system.

5.4 Synchronisation

In order to alleviate the traffic between the central web
server and the experiment servers, the stored device
parameters are inserted to or updated in the central
database. The central database also serves other purposes
in addition to caching parameters for each experiment. It
holds information on registered users, reserved devices and
even experiment logs.

The synchronisation of data between serves can be per-
formed by any authorized user with proper privileges.
While the experiments are being synchronized, multiple
tests and checks are performed. For instance, the databases
are queried and Node.js servers tested. Also if the device
was turned off or disconnected, it will not show up as
available anymore after the synchronisation is finished.

6. CONNECTED DEVICE

The experiment chosen to demonstrate the functions of
this online laboratory system is based on air levitation.
A ping-pong ball is suspended in a transparent cylindrical
tube. Its position is determined by a fan located in the base
of the tube. A feedback is generated by a laser proximity
sensor mounted on top of the fan. The behaviour of these
electronic components is controlled by an Arduino Uno
board, which communicates through USB port.

The experiment was inspired by similar implementations
around the world (Jernigan et al., 2008), (Berisch et al.,
2012), (Chaos et al., 2019), (Cho lodowicz and Or lowski,
2017), (Uhlmann et al., 2018), (Dellah et al., 2000) and
(Kuzhandairaj, 2018), but was also designed to mitigate
few imperfections from which these suffer. The biggest
difference by far from other devices created in this fashion
is the use of a laser proximity sensor. At the time of
building the device, the most commonly used sensors
in comparable solutions where infrared and ultrasound.
These come with their own set of flaws and inaccuracies
stemming from the technology limitations. In any and all
regards excluding its cost, the VL53L1X surpassed the
competition (VL5, 2018).

This simple plant is controlled by one input variable -
PWM signal generated by the Arduino board. It provides
two output variables, which are the position of the ball
(vertical distance from the sensor) and also the fan rota-
tion speed measured in revolutions per minute obtained
from the fan motor. More details about the plant con-
struction and inner workings can be found in (Rábek and
Žáková, 2019).

7. CONCLUSION

The proposed assignment was to increase the number of
usable experiments in the online laboratory system while
not sacrificing a unified user interface. Every connected
device should be fully utilized and not restricted by a single

Fig. 4. Sequential UML diagram of an experiment lifecycle.
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algorithm. This approach can potentially save resources
and augment the educational potential of the system at
the same time.

A high degree of modularity was achieved on both the
software and hardware levels to prepare the system for
potential future modifications and expansions. The imple-
mentation of a multitude of different technologies assures
that every task is completed by a solution most suited
for it. The various interfaces facilitating communication
ensure overall compatibility and scalability. The process
of implementing a new experiment is made easier by the
generalised commands represented by executable scripts,
which attach the often specific devices to robust simulation
environments. Log files store the output data and along
websockets are used to stream information to the user as
the experiment is still running. A unified user interface
to declare and initialize experiment parameters provide
a comfortable way to set up and execute different kinds
of experiments. The process of synchronisation detects
malfunctions and secures the system’s stability.

To test the integration process and overall functionality of
the system a new device was developed from scratch. Even
though this air levitation experiment was designed with
this particular system in mind, its integration highlights
the achieved modularity. It can be accessed from a unified
interface and runs experiments in both open-loop mode
using a simple python script and a closed-loop implemen-
tation with Matlab/Simulink.
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