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Abstract: This study is devoted to development of a new systematic signal control method for
a traffic flow model represented by the Burgers’ cellular automaton. First, it is shown that an
optimal signal control problem with an objective function on the total number of traffic jam is
formulated as a nonlinear integer programming problem．Then, a new algorithm to solve the
optimal signal control problem based on particle swarm optimization (PSO), and the method
is extended to a model-predictive-type control method in order to treat inflow and outflow of
cars. Some numerical simulations indicate that the new signal control method can reduce the
total number of traffic jam the most in the four methods.
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1. INTRODUCTION

In recent years, traffic jam of cars on roads is one of the
most serious problems in the world. Especially, in Japan,
traffic jam frequently occurs mainly in large metropoli-
tan areas. Economic loss on traffic jam of Japan for one
year is estimated at 12 trillion yen, and total time loss
for all Japanese is also estimated at 3.8 billion hours. It
is well known that traffic jam causes various problems;
environmental matters by exhaust gas, traffic accidents by
inflow of cars into community roads, negative effects to
drivers’ bodies (Kerner (2009)). The causes of traffic jam
are considered as natural jam by unconscious speed degra-
dation of drivers, closures and detours by road accidents,
decrease of roadway width by roadworks and on-street
parking, bottlenecks of cars at tollgates and junctions.
Moreover, signals installed at roads and intersections are
also a contributory factor of traffic jam. Inappropriate
switching of signals causes bottlenecks of cars, and then
they are evolved to traffic jam. Currently, there are mainly
two ways to switch signals; one is called “constant period
control” that switches signals periodically, and the other
is called “traffic sensing control” that switches signals
bases on sensing information about cars and pedestrians.
The latter control is more intelligent, and we can expect
that it will be developed through the fusion of not only
control theory and optimization methods but also newest
technologies such as IoT (Internet of Things), big data,
ITS (Intelligent Transportation Systems) (Gordon (2015);
Moridpour (2019)).

The purpose of this study is to develop a new signal control
method to minimize the total of traffic jam for a Burgers’
cellular automaton traffic flow model. The contents of this
paper are as follows. First, Section 2 introduces a Burgers’

cellular automaton traffic flow model. Next, Section 3
formulates an optimization problem for the Burgers’ cel-
lular automaton traffic flow model, and develop a solving
method based on particle swarm optimization (PSO). In
addition, the method is extended to a model-predictive-
type control method Finally, a numerical simulation is
preformed to confirm the effectiveness of the proposed
control method.

2. BURGERS’ CELLULAR AUTOMATON TRAFFIC
FLOW MODEL

In this section, a Burgers’ cellular automaton traffic flow
model will be formulated. First, a Burgers’ cellular au-
tomaton with signals is explained. Consider a single-line
traffic illustrated in Fig. 1. It is assumed that cars move
from left to right, and each cell can contain up to C cars.
We use indices on the time step and the cell number by
k = 1, · · · ,K and l = 1, · · · , L, respectively. Let us denote
the number of cars at the time k and in the l-th cell
by Uk,l ∈ {0, 1, · · · , C}. We also refer Sk,l ∈ {0, C} as
a signal variable, which is installed between the (l − 1)-
th and l-th cells, and ∆ as the indices set of signals. If
the sign of a signal installed at the cell l is blue, then
Sk,l = C holds. Conversely, if the sign of a signal installed
at the cell l is red, then Sk,l = 0 holds. If a signal is not
installed at the cell l, cars always can move through the
cell, and Sk,l = C (l ̸∈ ∆) always holds. Hence, the signal
variables Sk,l can be regard as control inputs. Under the
setting explained above, the Burgers’ cellular automaton
with signals, which represents time evolution of the cars in
the cells, is given by

Uk+1,l = Uk,l +min(Sk,l, Uk,l−1, C − Uk,l)

−min(Sk,l+1, Uk,l, C − Uk,l+1),

(k = 1, · · · ,K − 1; l = 2, · · · , L− 1).

(1)
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See Hirota and Takahashi (2003) for derivation and details
of it. In (1), the second term of the right-hand side shows
the inflow number of the cars from the cell l − 1 to l, and
the third term of the right-hand side shows the outflow
number of the cars from the cell l to l + 1.

Fig. 1. A Burgers’ cellular automaton with signals.
(C = 3，Red: 3, Yellow: 2, Green: 1)

Next, we shall derive a Burgers’ cellular automaton traffic
flow model based on the Burgers’ cellular automaton with
signals. In this study, we consider a traffic flow model
as shown in Fig. 2. The model consists of 6 Burgers’
cellular automaton traffic flow models, and 3 models are
in a transverse direction (U1, U2, U3) and 3 models
are in a longitudinal direction (V 1, V 2, V 3). The num-
ber of cars on the i-th (j-th) transverse (longitudinal)
road at the time k and the cell l is denoted by U i

k,l ∈
{0, 1, · · · , C} (i = 1, 2, 3; k = 1, · · · ,K; l = 1, · · · , L)
(V j

k,l ∈ {0, 1, · · · , C} (j = 1, 2, 3; k = 1, · · · ,K; l =

1, · · · , L)). It is assumed that the locations of signals in the
transverse and longitudinal roads are the same, and their
indices sets are represented as ∆U , ∆V . We also denote
the signal of the i-th transverse (longitudinal) road at the
(i, j) intersection of the i-th transverse road and the j-
th longitudinal road by Si

k,l ∈ {0, C} (i = 1, 2, 3; k =

1, · · · ,K; l ∈ ∆U ) and T j
k,m ∈ {0, C} (j = 1, 2, 3; k =

1, · · · ,K; m ∈ ∆V ), respectively. Since one signal is red
(blue) and the other signal is blue (red) at the same inter-

section, Si
k,l + T j

k,m = C; l ∈ ∆U ; m ∈ ∆V holds. Hence,

it must be noted that T j
k,m = C − Si

k,l holds, and Si
k,l can

indicate two signals at one time. Using the above variables,
the Burgers’ cellular automaton traffic flow model can be
represented by (2) and (3).

3. MODEL-PREDICTIVE-TYPE SIGNAL CONTROL
METHOD VIA PARTICLE SWARM OPTIMIZATION

This section will formulate an optimal signal control prob-
lem to minimize the total number of traffic jam for the
Burgers’ cellular automaton traffic flow model introduced
in Section 2, and consider a solving method of the problem
based on particle swarm optimization.

First, we define the total number of traffic jam. Let us
consider the i-th transverse road (2) and the number of
traffic jam can be calculated by subtracting the outflow
of the cars: min(Si

k,l+1, U
i
k,l, C − U i

k,l+1) from the current
number of cars: Uk,l. Therefore, by calculating the sum
total of the number of traffic jam, we can have the total
number of traffic jam as (4). Now, an optimal signal control
problem for the Burgers’ cellular automaton traffic flow is
stated as follows.

Problem 1 : For the Burgers’ cellular automaton traffic
flow model, find optimal signal inputs Si

k,l (i = 1, 2, 3; k =

1, · · · ,K−1; l ∈ ∆U ) such that the total number of traffic
jam (4) is minimized. 2

Fig. 2. A Burgers’ cellular automaton traffic flow model.
(C = 3，Red: 3, Yellow: 2, Green: 1)

Problem 1 can be formulated as the next optimization
problem:

min (4),

subject to (2), (3),

given initial and boundary conditions.

(5)

All the variables in (5) are integer with upper and lower
limits, and the objective function (4) and the Burgers’
cellular automaton traffic flow model (2), (3) are nonlinear,
hence (5) is represented as a nonlinear integer program-
ming problem. In general, it is quite hard to solve this
class of optimization problem and calculate an optimal
solution. In this study, we utilize “particle swarm opti-
mization (PSO),” which is one of the heuristic optimiza-
tion methods (Clerc (2006); Parsopoulos (2010)). We also
refer the modified version of PSO to solve a nonlinear
integer programming problem (Matsui et al. (2008)). We
set a particle for PSO as X = [ S1

1,l1
· · ·S3

K−1,l3
]T ∈

{0, 1}9(K−1) (l1, l2, l3 ∈ ∆U ), which are constructed by list
all the signal variables. The update rule in PSO is given
by

V t+1
n = wtV t

n + c1r
t
1(P

t
n −Xt

n) + c2r
t
2(P

t
g −Xt

n),

Xt+1
n = Xt

n + V t+1
n ,

(6)

where Xt
n is the n-th particle (n = 1, · · · , N) at the search

step t, V t+1
n is the value of update, P t

n is the best searching
point for the n-th particle, P t

g is the best searching point

for all the particles, wt, c1, c2, r
t
1, r

t
2 are parameters. We

first generate an initial set of particles X0
n (n = 1, · · · , N)

at random, then update particles by using (6). If the serach
step comes up the maximum value or the value of the best
particle does not change, then search by PSO is terminated
and the best particle is referred as the signal control inputs.

Moreover, we extend the above method based on PSO to a
model-predictive-type control method in order to consider
inflow and outflow of cars. The algorithm is shown as
follows.
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U i
k+1,l = U i

k,l +min(Si
k,l, U

i
k,l−1, C − U i

k,l)−min(Si
k,l+1, U

i
k,l, C − U i

k,l+1) (2)

V j
k+1,m = V j

k,m +min(T j
k,m, V j

k,m−1, C − V j
k,m)−min(T j

k,m+1, V
j
k,m, C − V j

k,m+1) (3)

(i, j = 1, 2, 3; k = 1, · · · ,K; l = 1, · · · , L; m ∈ 1, · · · ,M)

J =

3∑
i=1

3∑
j=1

K∑
k=1

L−1∑
l=1

M−1∑
m=1

[
{U i

k,l −min(Si
k,l+1, U

i
k,l, C − U i

k,l+1)}

+{V j
k,m −min(T j

k,m+1, V
j
k,m, C − V j

k,m+1)}
]

(4)

Algorithm 1 :

Step 1 At the time step k =1, solve the optimal signal
control problem for the predictive horizon κ by the new
method by PSO, and obtain an optimal signal switching
law Si

k,l (i = 1, 2, 3; k = 1, · · · , κ− 1; l ∈ ∆U ).

Step 2 Apply a part of the optimal signal switching law

Si
k,l (i = 1, 2, 3; k = 1, · · · , h; l ∈ ∆U ) to the Burgers’

cellular automaton traffic flow model (2), (3) for the time
interval h.

Step 3 Repeat Steps 1 and 2 until the time step reaches
the maximum value K. 2

(i) Calculate optimal control inputs by solving the optimal 

signal control problem for the prediction horizon by PSO. 

(ii) Input some control inputs and drive the system. 

(iii) Control the system by 

applying the steps (i) and (ii) 

repeatedly. 

time

position

Fig. 3. An illustration on model-predictive-type signal
control.

4. SIMULATIONS

In this section, some numerical simulations are performed
to confirm effectiveness of the proposed method. We here
consider the Burgers’ cellular automaton traffic flow model
illustrated in Fig. 2 with K = 20, L = 20, M = 20, and
the locations of signals are set as ∆U = {6, 11, 16}, ∆V =
{6, 11, 16}. We here consider inflow and outflow of cars as
disturbances as shown in Fig. 4. The numbers of cars and
locations on inflow and outflow of cars are determined in
a random manner.

In this study, we consider the following three control
method in order for comparison.

(a) Time Control: Switch signals by 3 time steps:

Si
k,l =

{
0 (k = 1, 2, 3, 7, 8, 9, · · · ),
C (k = 4, 5, 6, 10, 11, 12, · · · ). (7)

Fig. 4. The simulation setting of the Burgers’ cellular
automaton traffic flow model with inflow and outflow
of cars.

(b) Comparing Control: Compare the two numbers of cars
at the fronts of cells in a transverse and a longitudinal
directions, then switch the signal at the cell whose numbers
of cars is larger to blue. If the number of cars are same,
switch the signal at the cell in a longitudinal direction to
blue:

Si
k,l =

{
0 (U i

k,l−1 ≤ V j
k,m−1),

C (U i
k,l−1 > V j

k,m−1).
(8)

(c) PSO Control: Switch signals by using the proposed
control method based on PSO.

(d) PSO-MPC Control: Switch signals by using Algorithm
1.

20 patterns of initial locations of cars and boundary
conditions on inflow of cars to the model are generated
at random, and numerical simulations are performed by
using the control methods (a)–(d) for the 20 patterns.
The parameters for PSO are set as follows; the number of
particles: N = 100, the maximum serach step: T = 100, ωt

is the time-varying type proposed in Matsui et al. (2008):
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Table 1. The total numbers of traffic jam for
the four methods (a)–(d).

No. (a)Time (b) Compare (c) PSO (d) PSO-MPC

1 1309 1003 1305 758

2 1235 1165 1223 780

3 1874 1548 1603 1320

4 1275 1064 1257 776

5 1408 1087 1128 828

6 1321 1000 1239 796

7 1145 943 1272 817

8 1387 860 1308 755

9 1439 776 1082 709

10 1398 1003 1284 859

11 1330 933 1099 821

12 1085 946 1119 692

13 1124 766 1027 607

14 1300 954 1193 790

15 1285 793 1057 651

16 1626 1359 1557 1184

17 1392 1254 1323 882

18 1598 1100 1284 895

19 1665 1427 1619 1317

20 1455 1141 1435 952

Ave. 1382.55 1056.1 1270.7 859.45

ωt =

 ω0 − t(ω0 − ωT )

0.75T
t ≤ 0.75T,

ωT t > 0.75T,

(9)

where c1 = c2 = 1000000000, and rt1, rt2 are random
numbers in [0, 1].

Table 1 shows the total numbers of traffic jam obtained
by the control methods (a)–(d) for the 20 patterns. From
this result, it turns out that the proposed method (d) can
reduce the total number of traffic jam the most in the three
methods for al the 20 patterns. The averages of the total
number of traffic jam for al the 20 patterns are also shown
at the last column of Table 1. From these averages, we
can see that the proposed method (d) realizes about 38%
reduction in comparison with (a). We can also see that
the proposed method (d) realizes about 32% reduction
in comparison with (c) since (d) can take into account
inflow and outflow of cars, hence the proposed method
(d) has the robustness on inflow and outflow of cars. In
addition, the simulations show that the proposed method
(d) needs small amount of calculation since it is a model-
predictive-type. Consequently, it can be confirmed that
the proposed signal control method via PSO is effective
in terms of optimization and computation efficiency from
the simulation results.

5. CONCLUSIONS

In this study, an optimal signal control problem to mini-
mize the total number of traffic jam for the Burgers’ cellu-
lar automaton traffic flow model has been formulated, and
a solving method based on particle swarm optimization
has been developed. In addition, we extend the method to
a model-predictive-type control method. Numerical simu-
lations show that the proposed method can considerably
reduce the total number of traffic jam in comparison with
other methods.

Our future work are as follows: construction of new Burg-
ers’ cellular automaton traffic flow models in consideration
of left and right turns, and the optimal velocity model, de-
velopment of a distributed control method and numerical
simulations for large-sized urban areas.
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