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Abstract: Systems are often tasked with operating in modes where state feedback is available
intermittently. The analysis of such systems involves analyzing the behavior of individual
subsystems and the time that each subsystem is active, i.e., dwell-time conditions. Often,
these dwell-time conditions are conservative, potentially limiting the performance of the overall
system. In an effort to reduce conservativeness of the dwell-time condition, an adaptive data-
driven extremum seeking (ESC) method is used to develop a time-varying dwell-time condition.
Specifically, the ESC drives the evolution of the dwell-time condition to a less conservative
dwell-time condition while simultaneously ensuring stability of the overall system. Simulations
demonstrate a nearly threefold increase in a maximum dwell-time that results in significant
changes to the behavior of an agent tasked with following a path outside a feedback region.

Keywords: Time-Varying Dwell-Time Conditions, Intermittent State Feedback, Switched
System, Extremum Seeking Control (ESC)

1. INTRODUCTION

Factors such as task definition, complex operating environ-
ments, or sensor modality may result in temporary losses
(i.e., intermittencies) in state feedback, thereby restricting
the ability to utilize closed-loop feedback control. In efforts
to relax continuous state feedback constraints, switched
system approaches have been investigated in results such
as Parikh et al. (2017), Jia and Liu (2015), and Mehta
et al. (2008). Inherently, modes of operation where state
feedback is unavailable may introduce instabilities. Hence,
for dynamical systems governed by a family of subsystems
with stable and unstable modes, a switched system ap-
proach can be leveraged to model and analyze the stabil-
ity of the overall system (Goebel et al. (2012), Liberzon
(2003), Zhai et al. (2001), and Branicky (1998)).

Similar to Chen et al. (2018) and Chen et al. (2019), devel-
opment in this paper considers a single agent (extendable
to multiple) system tasked with following a path that
lies completely outside of a feedback region. To achieve
this objective, the system switches between two modes of
operation—one mode where the agent exits the feedback
region and dead-reckons to follow the desired path, and
another mode where the agent returns to the feedback
region to regulate state estimate errors. In this context,
the switched system is comprised of a single (or multiple)
agent(s) equipped with local sensing capabilities subject
to intermittent state information. Dwell-time conditions
are developed to determine the duration a system must
operate with feedback, and the duration the system can

dead-reckon. In results such as Parikh et al. (2017), Chen
et al. (2018), and Zegers et al. (2019), Lyapunov-based
switching control designs inherently result in conservative
dwell-time constraints. The practical implications of such
conservative dwell-time conditions is that the agent is
required to return to the feedback region more frequently
than actually required, thereby reducing the amount of
time the agent can follow the desired path in feedback-
denied regions.

Extremum Seeking Control (ESC) is a feedback control
method that exploits an unknown steady-state input-
to-output mapping (i.e., response map) with a local
(or global) extremum to achieve real-time optimization.
Typical ESC methods include the use of a periodic
perturbation injected in the feedback loop to explore
the neighborhood around a setpoint to find the ex-
tremum. Various numerical-based extremum search algo-
rithms have been developed (e.g., Brent’s method), but
the first perturbation-based stability proof was introduced
in Krstic and Wang (2000). ESCs have since been an
attractive model-free method in applications where the
response of a system is governed by an unknown nonlinear
model, and has a local (or global) extremum (Ariyur and
Krstic (2003)). Due to its simplicity and adaptability,
ESCs have been extensively utilized in various applications
such as tuning gains of a PID controller (Killingsworth
and Krstic (2006)), maximizing power output in rehabili-
tation robotics (Duenas et al. (2018)), and hybrid systems
(Poveda and Teel (2017)). ESC is used in this paper as
an online optimization method to regulate a state to the
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neighborhood of an unknown setpoint that reduces the
conservativeness of the maximum dwell-time condition.

In this paper, a switched system approach is used to de-
velop a time-varying dwell-time condition. The dwell-time
condition development uses intermittent measurements of
the dead-reckoning error to maximize the agent’s dura-
tion in the feedback-denied region while simultaneously
ensuring stability. Specifically, the framework introduced
in Chen et al. (2018) is modified to include an ESC al-
gorithm to generate an input that uses output measure-
ments intermittently to increase the maximum dwell-time
condition. Although ESC methods drive an input towards
an unknown setpoint, the challenge in the context of this
problem is to simultaneously ensure the evolution of the
dwell-time conditions while maintaining stability of the
tracking error objectives, i.e., if the agent remains in the
feedback-denied region too long, it may restrict the agent’s
ability to navigate back to the feedback region. By virtue
of ESC algorithms, the evolution of the input must exploit
the neighborhood around a setpoint to find the extremum.
Thus, to ensure stability of the system, an adjustable offset
parameter is incorporated within the ESC algorithm.

2. SYSTEM MODEL

The dynamics of an agent can be modeled as

ẋ (t) = f (x (t) , t) + v (x (t) , t) + d (t) , (1)

where x : R≥0 → Rn denotes the state of the agent,
f : Rn × R≥0 → Rn denotes the known drift dynamics,
d : R≥0 → Rn denotes unknown exogenous disturbances,
and v : Rn × R≥0 → Rn denotes the control input.
The following assumptions are used in the subsequent
development.

Assumption 1. The function (x, t) 7→ f (x, t) is continuous
in t and globally Lipschitz in x, i.e., ‖f (a, t) − f(b, t)‖ ≤
L‖a − b‖ ∀a, b ∈ Rn, where L ∈ R≥0 is the Lipschitz
constant. �
Assumption 2. The exogenous disturbances d (·) can be
bounded as ‖d (t)‖ ≤ d ∀t ∈ R≥0, where d ∈ R>0 is
known. �

3. STATE ESTIMATION AND CONTROL
OBJECTIVE

A known region where feedback is available is denoted by
a compact set F ⊂ Rn, and its complement is a region
where feedback is unavailable. Feedback is available when
the agent is in the feedback region (i.e., x (t) ∈ F), and
unavailable otherwise. The goal is for an agent to follow
a desired path, denoted by xd : R≥0 → Rn, that lies
completely outside of the feedback region, i.e., xd (t) /∈ F
for all t ∈ R≥0. Since the desired path is outside of
the feedback region, the state estimate, denoted by x̂ :
R≥0 → Rn, is used to estimate the agent’s state when
the agent is outside of the feedback region. Consequently,
open-loop state estimates may diverge from the true state,
thus requiring the agent to intermittently return to the
feedback region to ensure the estimation error remains
bounded. Since the agent is required to cyclically traverse
between feedback and feedback-denied regions, the control
objective is to follow an auxiliary trajectory. An auxiliary
trajectory, denoted by xσ : R≥0 → Rn, must be designed

such that the path traverses between the desired path and
the feedback region. Given these objectives, three error
signals are defined as

e (t), x (t)− xσ (t) , (2)

ê (t), x̂ (t)− xσ (t) , (3)

ẽ (t), x (t)− x̂ (t) , (4)

where e : R≥0 → Rn denotes the error between the
actual state and the auxiliary trajectory, ê : R≥0 → Rn
denotes the error between the state estimate and the
auxiliary trajectory, and ẽ : R≥0 → Rn denotes the error
between the actual state and the state estimate. When
state feedback is available, the objective is to regulate all
three error signals in (2)-(4). From (2)-(4), the following
beneficial relations can be developed

ê (t) = e (t)− ẽ (t) , (5)

e (t) = ê (t) + ẽ (t) . (6)

The goal is to follow the desired path while ensuring the
error signals in (2)-(4) remain bounded. Due to potential
instabilities with open-loop state estimators, the challenge
is to ensure the agent returns to the feedback region while
simultaneously maximizing the time spent outside of the
feedback region to enable the agent to follow the desired
path (Chen et al. (2018)). When x (t) ∈ F , a minimum
dwell-time condition is required to ensure the norm of
the errors is less than a user-defined threshold before
exiting the feedback region. When x (t) /∈ F , a maximum
dwell-time condition is established to ensure the norm of
the errors do not exceed a user-defined threshold. The
agent’s capability to follow the desired path is restricted
by the subsequently developed dwell-time conditions. To
achieve the control objective while increasing robustness to
intermittencies in state feedback, an ESC scheme is used to
develop a time-varying dwell-time condition that increases
the allowable duration outside of the feedback region.

4. CONTROLLER AND UPDATE LAW DESIGN

To facilitate the subsequent development and analysis,
modes of the switched system (subsystems) when state
feedback is available and unavailable are denoted by Pa ∈
N and Pu ∈ N, respectively. The set of operating modes of
the switched system is denoted by P , {Pa,Pu} ⊂ N.
Then a switching signal, denoted by p : R≥0 → P,
indicates the active subsystem. The ith instant when p
switches from Pu to Pa is denoted by tPai ∈ R≥0 for all
i ∈ N≥0, i.e., the instant the agent enters the feedback
region. For the complementary case, the ith instant when
p switches from Pa to Pu is denoted by tPui ∈ R≥0, i.e., the
instant the agent exits the feedback region. Based on the
switching instants, dwell-times of the ith activation of the
subsystems Pa and Pu are defined as ∆tPai , t

Pu
i −t

Pa
i and

∆tPui , t
Pa
i+1− t

Pu
i , respectively. The following assumption

is made about the initial operating mode of the system.

Assumption 3. The agent is initialized in a feedback re-
gion, i.e., x (0) ∈ F where t = 0 corresponds to tPa0 . �

Based on the subsequent analysis, the state estimate
update law, denoted by ˙̂x : R≥0 → Rn, is designed as
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˙̂x (t) ,


f (x̂ (t) , t) + v (x(t), t)

+vr (ẽ (t)) , t ∈ [tPai , tPui ),

f (x̂ (t) , t) + v(x̂(t), t), t ∈ [tPui , tPai+1),

(7)

where x̂ : R≥0 → Rn denotes the state estimate, and
vr : Rn × R≥0 → Rn denotes the auxiliary input. The
control and auxiliary inputs are designed as

v(x(t), t),


ẋσ(t)− dsgn (e (t))

−f (x (t) , t)− ke (t) , t ∈ [tPai , tPui ),

ẋσ (t)− f (x̂ (t) , t)

−kê (t) , t ∈ [tPui , tPai+1),

(8)

vr (ẽ (t) , t), kẽẽ (t) + dsgn (ẽ (t)) , (9)

respectively, where k, kẽ ∈ R>0 are adjustable parameters,
and sgn (·) denotes the signum function.

When the agent is in the feedback region (i.e., t ∈ [tPai ,

tPui )), the controller inputs in (7)-(9) regulate the error
signals in (2)-(4). When the agent exits the feedback region

(i.e., t ∈ [tPui , tPai+1)), the control inputs in (7)-(8) use open-
loop state estimates (dead-reckoning) for navigation. Since
open-loop estimates will drift over time, dead-reckoning
may result in potential instabilities. Thus, a maximum
dwell-time condition is developed to quantify the maxi-
mum duration the agent can dead-reckon while simultane-
ously ensuring the agent can return to the feedback region.

In Chen et al. (2018), the maximum dwell-time condition
enforces the norm of the error to be bounded by a
maximum error threshold, denoted by eM ∈ R>0, before
entering the feedback region. To guarantee re-entry to
the feedback region, the selection of the maximum error
threshold is dictated by the size of the feedback region,
i.e., the larger the feedback region the larger eM can be
selected. 1 The maximum dwell-time condition in Chen
et al. (2018) is conservative, i.e., experiments indicate that
the agent can remain outside the feedback region for a
longer duration while maintaining the specified maximum
error threshold.

The main idea of this paper is to use intermittent state
measurements in a sample-based feedback ESC algorithm
to reduce the conservativeness of the maximum dwell-
time condition, thereby maximizing the time an agent can
follow the desired path outside the feedback region. Each
re-entry into the feedback region provides a measurement

of the accumulated dead-reckoning error, i.e., e
(
tPai+1

)
.

Specifically, the goal is to minimize the difference between
the dead-reckoning error and the maximum allowable error
eM (minus an offset denoted as φ ∈ (0, eM )). To this
end, an output function (i.e., a cost function), denoted
by y : R≥0 → R≥0, of the system is defined as

y
(
tPai+1

)
, ky

(
eM − φ−

∥∥∥e(tPai+1

)∥∥∥)2

, (10)

where ky ∈ R>0 is a user-defined parameter. The ex-

tremum of the output in (10) corresponds to
∥∥∥e(tPai+1

)∥∥∥ =

1 This paper considers circular feedback regions with a known
radius. Therefore, the selection of the maximum error threshold must
be selected less than or equal to the radius of the feedback region to
guarantee re-entry.

eM − φ. As stated in the following assumption, an ESC
algorithm can be used to develop an input parameter,
denoted by Γ : R≥0 → R, that adjusts the dwell-time,

and hence e
(
tPai+1

)
, to minimize the cost in (10).

Assumption 4. Given the dynamic model in (1), with
the state estimate in (7), and controller in (8) and (9),
there exists an ESC algorithm 2 such that each discrete

measurement of e
(
tPai+1

)
produces Γ

(
tPai+1

)
that converges

to a neighborhood of an unknown optimal setpoint Γ∗ ∈ R
that minimizes (10). �

5. SWITCHED SYSTEM STABILITY ANALYSIS

Taking the time derivatives of (2)-(4) and substituting the
agent’s dynamics, state estimate update law, control input,
and auxiliary control input in (1), (7)-(9), respectively,
yields (Chen et al. (2018))

ė (t) = −ke (t)− dsgn (e (t)) + d (t) , t ∈ [tPai , tPui ), (11)

˙̂e (t) = −kê (t) , t ∈ [tPui , tPai+1), (12)

˙̃e (t) =


f (x (t) , t)− f (x̂ (t) , t) + d (t)

−kẽẽ (t)− dsgn (ẽ (t)) , t ∈ [tPai , tPui ),

f (x (t) , t)− f (x̂ (t) , t) + d (t) , t ∈ [tPui , tPai+1).

(13)

To analyze the switched system, candidate Lyapunov
functions are defined as

Ve (e (t)) ,
1

2
eT (t) e (t) , (14)

Vê (ê (t)) ,
1

2
êT (t) ê (t) , (15)

Vẽ (ẽ (t)) ,
1

2
ẽT (t) ẽ (t) , (16)

where Ve : Rn → R≥0, Vê : Rn → R≥0, and Vẽ :
Rn → R≥0. Taking the time derivatives of (14)-(16), using
Assumption 1, and substituting (11)-(13) yields

V̇e (e (t)) ≤ −k ‖e (t)‖2 , t ∈ [tPai , tPui ), (17)

V̇ê (ê (t)) ≤ −k ‖ê (t)‖2 , t ∈ [tPui , tPai+1), (18)

V̇ẽ (ẽ (t)) ≤

−λa ‖ẽ (t)‖2 , t ∈ [tPai , tPui ),

λu ‖ẽ (t)‖2 +
d

2

2
, t ∈ [tPui , tPai+1),

(19)

respectively, where λa, λu ∈ R>0 are known positive
constants defined as

λa , kẽ − L, (20)

λu ,L+
1

2
, (21)

respectively, provided kẽ > L. Using the Comparison
Lemma in Khalil (2002) and definitions of the candidate

2 See Krstic and Wang (2000), Choi et al. (2002), and Guay (2014)
for potential ESC schemes.
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Lyapunov functions in (14)-(16), it follows from (17)-(19)
that

‖e (t)‖ ≤
∥∥∥e(tPai )∥∥∥ e−k(t−tai ), t ∈ [tPai , tPui ), (22)

‖ê (t)‖ ≤
∥∥∥ê(tPui )∥∥∥ e−k(t−t

Pu
i ), t ∈ [tPui , tPai+1), (23)

‖ẽ (t)‖ ≤


∥∥∥ẽ(tPai )∥∥∥ e−λa(t−t

Pa
i ), t ∈ [tPai , tPui ),[

Cẽe
2λu(t−tPui ) − 1

2λu
d

2

]1/2

, t ∈ [tPui , tPai+1),

(24)

respectively, where Cẽ : R≥0 → R>0 is defined as

Cẽ

(
tPui

)
,
∥∥∥ẽ(tPui )∥∥∥2

+
d

2

2λu
. (25)

Using (5) and (6), it follows from (22)-(24) that

‖ê(t)‖ ≤ Cê
(
tPai

)
e−min{k,λa}(t−tPai ), t ∈ [tPai , tPui ),

(26)

‖e (t)‖ ≤

[
Cẽ

(
tPui

)
e2λu(t−tPui ) − d

2

2λu

] 1
2

(27)

+
∥∥∥ê(tPui )∥∥∥ , t ∈ [tPui , tPai+1),

where Cê : R≥0 → R>0 is defined as

Cê

(
tPai

)
,
∥∥∥e(tPai )∥∥∥+

∥∥∥ẽ(tPai )∥∥∥ . (28)

When the agent is in the feedback region, the inequality
in (26) provides a bound on the convergence rate of
the normalized error between the state estimate and the
auxiliary trajectory. When the agent is outside of the
feedback region, the inequality in (27) provides a bound on
the growth rate of the normalized error between the true
state and auxiliary trajectory. Using (26) and (27), dwell-
time conditions are developed in the following theorem
to ensure stability of the switched system, despite the
potentially unstable subsystem.

Theorem 1. The composite error system trajectories of the
switched system generated by the family of subsystems
described by (11)-(13), with a piece-wise constant, right
continuous switching signal t 7→ p (t) ∈ P are globally
uniformly ultimately bounded, provided Assumptions 1-
4 hold and the switching signal satisfies the minimum
feedback availability dwell-time condition

∆tPai ≥ −
1

min {k, λa}
ln

min

 êT

Cê

(
tPai

) , 1

 , (29)

and the maximum loss of feedback dwell-time condition

∆tPui ≤
1

2λu
ln


(

Γ
(
tPai+1

)2

−
∥∥∥ê(tPui )∥∥∥)2

+ d
2

2λu

Cẽ

(
tPui

)
 ,

(30)

where λa, λu, Cẽ

(
tPui

)
, and Cê

(
tPui

)
are previously

defined in (20), (21), (23), and (24), respectively, êT ∈

(0, eM ) is a user-defined threshold, eM is a user-defined

threshold defined in (10), and Γ
(
tPai+1

)
is generated by

the ESC scheme.

Proof. When the agent is inside the feedback region (i.e.,

t ∈ [tPai , tPui )), the objective is to ensure the norm of
the error in (26) is less than a user-defined threshold

before exiting the feedback region, i.e.,
∥∥∥ê(tPui )∥∥∥ ≤ êT .

To determine the minimum dwell-time condition, (26) is
used to develop the following constraint∥∥∥ê(tPui )∥∥∥≤ Cê (tPai ) e−min{k,λa}∆tPai ≤ êT . (31)

Solving (31) for ∆tPai yields the minimum dwell-time
condition in (29).

When the agent is outside the feedback region (i.e., t ∈
[tPui , tPai+1)), the objective is to ensure the norm of the error
in (27) is upper bounded by a user-defined threshold upon

entering the feedback region, i.e.,
∥∥∥e(tPai+1

)∥∥∥ ≤ eM . To

incorporate the ESC scheme into the maximum dwell-time
condition, (27) is used to develop the following constraint∥∥∥e(tPai+1

)∥∥∥ ≤ Γ
(
tPai+1

)2

, (32)

where Γ
(
tPai+1

)
is generated by the ESC scheme. Substitut-

ing (27) into the constraint in (32), the maximum dwell-

time condition in (30) is the solution ∆tPui to
∥∥ê(tPu

i

)∥∥ +[
Cẽ
(
tPu
i

)
e
2λu∆t

Pu
i − d

2

λu

]1/2

≤ Γ
(
tPa
i+1

)2
. Each instant the

agent re-enters the feedback region, (10) is computed
and used to update the ESC input and generate a new

Γ
(
tPai+1

)
. By Assumption 4, the ESC input Γ

(
tPai+1

)
con-

verges to a neighborhood of the unknown setpoint Γ∗.

Since Γ∗ minimizes the output in (10), as Γ
(
tPai+1

)
ap-

proaches the neighborhood of Γ∗, the output approaches

the neighborhood of the extremum, i.e.,
∥∥∥e(tPai+1

)∥∥∥ →
Nρ (eM − φ) and Nρ (·) denotes a neighborhood of size

ρ > 0. To ensure
∥∥∥e(tPai+1

)∥∥∥ ≤ eM is satisfied, the offset

parameter in (10) is selected as φ > ρ, where it is assumed
ρ ∈ (0, eM ) is known. �

Remark 1. The minimum dwell-time condition can be
eliminated using reset maps (cf., Chen et al. (2018) see
Section IV A).

Remark 2. In Chen et al. (2018), when the agent is out-
side of the feedback region, (27) is bounded by a con-

stant and results in the following constraint
∥∥∥ê(tPui )∥∥∥ +[

Cẽ

(
tPui

)
e2λu∆tPu

i − d
2

λu

]1/2
≤ eM , and compared to

(32), yields the more conservative maximum dwell-time

condition ∆tPui = 1
2λu

ln

(
(eM−‖ê(tPui )‖)2

+ d
2

2λu

Cẽ(tPui )

)
.

6. SIMULATION

A simulation is performed to illustrate the performance
of the controller and the adaptability of the dwell-time
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condition. Based on (1), the dynamics are selected as
f (x, t) = Ax where A = 0.5I3, I3 represents a 3 ×
3 identity matrix, and the disturbance d (t) is drawn
from a uniform distribution between [0, 0.06] meters per
second. The initial condition for the states and estimates
are selected as x (0) =

[
0.1m, 0.0m, π2 rad

]
and x̂ (0) =[

0.15m, 0.05m, π2 rad
]
. The desired maximum and lower

threshold for the error signals are selected as eM = 0.9
and êT = 0.01 meters, respectively. The control input and
auxiliary input gains are selected as k = 1I3 and kẽ = 5I3
respectively. The offset parameter and gain parameter
for the output function is selected as φ = 0.25 meters
and ky = 1000, respectively. Based on Assumption 4, a
discretized perturbation-based ESC scheme from Krstic
and Wang (2000) 3 , is used as

Γ
(
tPai+1

)
, Γ̂

(
tPai+1

)
+ a sin (wi) ,

Γ̂
(
tPai+1

)
, Γ̂

(
tPai

)
+ ∆Γ̂

(
tPai+1

)
,

∆Γ̂
(
tPai+1

)
, kξ

(
tPai+1

)
,

ξ
(
tPai+1

)
, ξ

(
tPai

)
+ ∆ξ

(
tPai+1

)
,

∆ξ
(
tPai+1

)
, ωl

(
y
(
tPai+1

)
− η

(
tPai+1

))
a sin (wi)

−ωlξ
(
tPai+1

)
,

η
(
tPai+1

)
, η

(
tPai

)
+ ∆η

(
tPai+1

)
,

∆η
(
tPai+1

)
,−ωhη

(
tPai+1

)
+ ωhy

(
tPai+1

)
,

where a, w, k, wl, wh ∈ R>0 are adjustable parameters,

Γ̂, ξ, η : R≥0 → R are auxiliary signals, y
(
tPai+1

)
is

the intermittent measurements given in (10). The ESC
parameters are k = 0.005, a = 0.01, w = 0.02, wh =
0.0012, and wl = 0.002.

The desired path xd is selected as a circular path with a
radius of 2 meters centered at the origin. The boundary of
the feedback region is selected as a circle with a 1 meter
radius about the origin. Following the framework of Chen
et al. (2019), a smootherstep function, as defined in Ebert
(2003) is used to design the auxiliary trajectory xσ (t).

Fig. 1 illustrates the agent’s planar trajectory. When the
agent is inside the region with state feedback, the esti-
mation error exponentially converges. When the agent is
outside the feedback region, the error exhibits divergence.

In Fig. 2, the error ‖e (t)‖ is shown to converge to the
extremum point of 0.7 meters while simultaneously re-
maining bounded by the maximal error of 0.9 meters for
all time. In Fig. 3, the maximum dwell-time condition is
illustrated. Specifically, the impact of using ESC to adjust
the dwell-time condition is the maximum time to dead-
reckon increases by a factor of 2.8 from 5.34 seconds to
14.93 seconds.

3 Other ESC methods could also be explored to potentially yield
different performance.
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Fig. 1. Simulation result for 60 seconds. Both the sys-
tem state x (t) and auxiliary trajectory xσ (t) are
initialized in the feedback region (gray shaded region).
When x (t) ∈ F , the state estimate x̂ (t) exponentially
converges to xσ (t). When x (t) /∈ F , the state x (t)
gradually diverges from xσ (t) due instabilities. Before
the maximum dwell-time is reached, x (t) re-enters
the feedback region to prevent the error ‖e (t)‖ from
exceeding a user-defined threshold.
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Fig. 2. Evolution of error ‖e (t)‖ when x (t) /∈ F . The black
(top) dashed line represents the maximum allowable
error eM and the blue (bottom) dashed line represents
the extremum point of the output function that the
ESC minimizes. The error increases to the extremum
point while remaining bounded by eM for all time.

7. CONCLUSION

A Lyapunov-based, switched system approach is used to
develop a switching control design for path following in
systems subject to intermittencies in state information.
Maximum and minimum dwell-times are developed to
provide sufficient stability conditions for the switched
system. ESC is used to develop dwell-time conditions that
reduce the conservativeness as more information is learned
from intermittent measurements of the state. The dwell-
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Fig. 3. Evolution of the dwell-time condition as the agent
receives intermittent output measurements upon re-
entry of the feedback available region.

time conditions allow the desired path to be completely
outside of the feedback region, and an auxiliary trajectory
is designed guarantee the agent re-enters the feedback
region before the error growth exceeds a defined bound.
The simulation indicates a factor of 2.8 increase in the
maximum dwell-time as a result of the ESC method.
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