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Abstract: This paper investigates the stability and stabilization of some generic dynamic
second-order linear time-invariant system including a single delay in the mathematical represen-
tation. As a first result, an appropriate stability criterion based on the manifold defined by the
coexistence of the maximal number of negative spectral values is derived. Second, such ideas are
exploited in the context of delayed output feedback by an appropriate “partial” pole placement
guaranteeing simultaneously the stability in closed-loop and an appropriate exponential decay
rate of the corresponding solution for the closed-loop system. To perform such an analysis, the
argument principle is explicitly used. An illustrative example completes the presentation.
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1. INTRODUCTION

Time-delay is encountered in many fields, such as in
Physics, Biology and Economy. It is often use in modeling
transportation and propagation phenomena, population
dynamics or in approximating models described by partial
differential equations. A strong and ever-growing interest
on time-delay systems has been reported over the years,
see, for instance, Niculescu [2001], Bellman and Cooke
[1963], Hale and Lunel [1993], Stépán [1979] and references
therein.

In the stability analysis of time-delay systems, many ap-
proaches have been developed in both time- and frequency-
domain by generalizing methods and techniques used in
the stability characterization of finite-dimensional sys-
tems. As in finite-dimension, a wide range of frequency-
domain techniques have been derived, addressing the dis-
tribution of the roots of the corresponding characteristic
equation and related properties, see, for instance, Olgac
and Sipahi [2002], Michiels and Niculescu [2007], Walton
and Marshall [1987], Sipahi et al. [2011], Boussaada et al.
[2015], Cooke and van den Driessche [1986].

If the scalar case is completely understood and the existing
links between the spectral abscissa, the maximal allowed
multiplicity of the characteristic roots, and the system’s
parameters is completely characterized, the second-order
system still needs a deeper analysis. This paper addresses
such problems.

This work is motivated by recent studies Boussaada and
Niculescu [2016b], Boussaada et al. [2018], Boussaada and
Niculescu [2016b,a] where a property called Multiplicity-
Induced-Dominancy (MID) is emphasized, which consists
in characterizing the exponential decay rate of the trivial
solution. Recently, in Boussaada and Niculescu [2016b], a
result by Polya and Szegô is revisited and exploited allow-
ing to explicitly derive a bound for the number of real roots
of the corresponding characteristic function. Such a bound
is nothing else that degree of the quasipolynomial Bous-
saada et al. [2018],. In Boussaada and Niculescu [2018],
an analytical proof for the dominancy of the spectral
value with maximal multiplicity for second-order systems
is explicitly provided.

Quite recently, Amarne et al. [2018] showed that the
multiplicity of a real root itself is not important as such
but its connection with the dominancy of this root is a
meaningful tool in constructing controllers. As a matter
of fact, it is proven that, under appropriate conditions,
the coexistence of the maximal number of negative dis-
tinct roots guarantees their dominancy. In this case, an
adequate factorization is derived in the scalar and second-
order delay differential equations with single delay allow-
ing to write the quasipolynomial in an some appropriate
integral operator form. Furthermore, if these (real) roots
are negative, the asymptotic stability of the trivial solution
follows straightforwardly.

It is worth mentioning that, in most of the cases, such
a factorization is hard to be established, especially for
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the quasipolynomials with higher-degrees. The stability
criteria initially proposed and developed in Stépán [1979]
and generalized later in Hassard [1997] allow to compute
analytically the number of characteristic roots in the right-
half complex plane (i.e., unstable roots) for time-delay sys-
tem of retarded type by avoiding the direct calculation of
the corresponding improper integral. Our study is mainly
inspired by Boussaada et al. [2020], where the property of
MID is investigated for the generic second-order retarded
differential equation. In other words, the present paper fo-
cuses on the application of the Stépàn-Hassard approach to
show the dominancy of real spectral values which are not
necessarily multiple. To illustrate our results, we consider
the problem of stabilizing the Mach number of a transonic
flow in a wind tunnel. The corresponding mathematical
model is a second-order delay-differential equation where
the propagation phenomena was represented by using an
appropriate constant delay.

The remaining of the paper is organized as follows. In
Section 2, we present the problem formulation and we
recall some known results on the spectrum distribution of
retarded delay systems useful in the forthcoming sections.
Next, conditions on the system parameters guaranteeing
the co-existence of the maximal number of real roots
is carried out in Section 3. In the particular case of
equidistributed real roots the argument principle is applied
to prove the dominancy of such real spectral values. All
illustrative example completes the presentation and some
concluding remarks end the paper.

The notations are standard.

2. PRELIMINARIES

2.1 Problem Statement

Consider the following generic LTI system including one
delay:

ẋ(t) = Ax(t) +Bx(t− τ), (1)

under appropriate initial conditions, where x(t) ∈ Rn

and A and B are n × n real matrices. The corresponding
spectral values are characterized by evaluating for s the
following characteristic equation:

∆(s) = det(sI −A−Be−τs) = 0. (2)

It is well known that the asymptotic stability of the
trivial solution is guaranteed if all roots of (2), called
characteristic roots, are located in the left-half plane.
Notice also that real spectral values correspond to non
oscillatory solutions of (1).

It is also well known that second-order linear systems
capture the dynamic behavior of many natural phenomena
and have found numerous applications in a variety of
fields, such as vibration, structural analysis and human
balancing. To the best of the authors’ knowledge, the
first studies have been done by Gorelik [1939] (discussing
the effect of the electron transit time in a vacuum tube)
and Minorsky [1942] (in connection with the self-excited
oscillations in a ship-stabilization problem). Finally, the
first discussion on the multiple characteristic roots of such
systems seems to be proposed by Pinney [1958] more than
60 years ago.

In this paper, we focus on planar systems (1) (i.e. n = 2)
and restrict our analysis to systems where the correspond-
ing quasipolynomials writes under the form:

∆(s, τ) = P (s) +Q(s)e−sτ

with deg(P ) = 2 and deg(Q) = 1. As mentioned in the
Introduction, we will explicitly investigate the effect of
the coexistence of real roots on the stability of the trivial
solution. In other words, we wish to give an answer to the
following question: Is the coexistence of sufficiently many
negative roots guarantees the location of the remaining
roots in the left-half plane?

2.2 Prerequisites

In complex analysis, it is well-known that the argument
principle is a consequence of Cauchy theorem, and it
connects the winding number of a closed rectifiable curve
(see, e.g., Conway [1984] for a deeper discussion on the
topics) with the number of zeros and poles inside the curve.
This result gives insights on the location of zeros and poles
of a given meromorphic function.

Theorem 1. (Argument principle): let V ∈ C be a bounded
domain with smooth boundary Γ positively oriented
(counter-clockwise) and let f be a meromorphic function
inside the contour Γ, then

1

2iπ

∮
Γ

f ′(z)

f(z)
dz = Z − P, (3)

where P and Z denote the number of poles and zeros of f
in V , counted with their multiplicities.
In particular, if f(z) is analytic inside Γ, then the left-hand
side of (3) gives the number of zeros of f(z) inside Γ.

We need also to recall the statement of Hassard’s Theorem:

Theorem 2. (Hassard’s Theorem). Let A1, ..., Am be real
n by n matrices, and let τ1, · · · , τm be nonnegative reals.
Let

∆(s, τ) = det(sI −
m∑
j=1

e−sτjAj). (4)

Let ρ1, · · · , ρJ be the positive zeros ofR(y) = <(i−n∆(iy)),
counted by multiplicity and ordered so that ρ1 ≥ · · · ≥
ρj > 0. For each j = 1, · · · , J such that ∆(iρj) = 0,
assume that the multiplicity of iρj a zero of ∆(λ) is the
same as the multiplicity of ρj as a zero of R(y). Then, the
number of roots of the characteristic equation∆(λ) = 0
which lie in <(s) > 0, counted by multiplicity, is given by
the formula

n−K
2

+
1

2
(−1)JsgnS(κ)(0) +

J∑
j=1

(−1)j−1sgnS(ρj) (5)

where K is the number of zeros of ∆(s, τ) on <(λ) = 0,
counted by multiplicity, k is the multiplicity of s = 0
as a root of ∆(s, τ) = 0, and S(y) = Im(i−n∆(iy)).
Furthermore, the count (5) is odd if ∆(k)(0) < 0 and is
even if ∆(k)(0) > 0. If R(y) has no positive zeros, set
r = 0 and omit the summation term in (5). If λ = 0 is
not a root of the characteristic equations, set κ = 0 and
interpret S(0)(0) as S(0) and ∆(0)(0) as ∆(0).

3. MAIN RESULTS

Consider now, the second-order system

ẍ(t) + a1ẋ(t) + a0x(t) = u(t) (6)
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where u is the unknown control. Assume that the system
(6) is unstable in the uncontrolled case (u(t) = 0). Our
aim is to construct an appropriate delayed-state-feedback
controller of the form:

u(t) = −α0x(t− τ)− α1ẋ(t− τ), (7)

allowing to guarantee the stability of the system (6) in
closed-loop. The characteristic quasi-polynomial function
corresponding to the closed-loop system is described as
follows:

∆(s, τ) = P (s) +Q(s)e−sτ = 0, (8)

where P (s) and Q(s) are polynomials in s with degree of
Q(s) is less then the degree of P (s). In our case, we will
have explicitly

P (s) = s2 + a1s+ a0s and Q(s) = α1s+ α0. (9)

3.1 On qualitative properties of s1 as a root of (8)

The following proposition gives conditions on the param-
eter coefficients that allows assigning a maximum number
of spectral values of the second-order system (6)-(7).

Proposition 3. The following assertions hold:

• The quasipolynomial (8) admits four distinct real
spectral values s1, s2, s3 and s4 with s4 < s3 < s2 <
s1 if and only if the parameters a1, a2 , α1 and α0

satisfy

a1(τ) =
1

Q(τ)

∣∣∣∣∣∣∣∣
1 s2

1 s1e
−s1τ e−s1τ

1 s2
2 s2e

−s2τ e−s2τ

1 s2
3 s3e

−s3τ e−s3τ

1 s2
4 s4e

−s4τ e−s4τ

∣∣∣∣∣∣∣∣ ,

a0(τ) =
1

Q(τ)

∣∣∣∣∣∣∣∣
s2

1 s1 s1e
−s1τ e−s1τ

s2
2 s2 s2e

−s2τ e−s2τ

s2
3 s3 s3e

−s3τ e−s3τ

s2
4 s4 s4e

−s4τ e−s4τ

∣∣∣∣∣∣∣∣ ,

α1(τ) =
1

Q(τ)

∣∣∣∣∣∣∣∣
1 s1 s1e

−s1τ s2
1

1 s2 s2e
−s2τ s2

2

1 s3 s3e
−s3τ s2

3

1 s4 s4e
−s4τ s2

4

∣∣∣∣∣∣∣∣ ,

α0(τ) =
1

Q(τ)

∣∣∣∣∣∣∣∣
1 s1 s

2
1 s1e

−s1τ

1 s2 s
2
2 s2e

−s2τ

1 s3 s
2
3 s3e

−s3τ

1 s4 s
2
4 s4e

−s4τ

∣∣∣∣∣∣∣∣ ,

(10)

where

Q(τ) =

∣∣∣∣∣∣∣∣
1 s1 s1e

−s1τ e−s1τ

1 s2 s2e
−s2τ e−s2τ

1 s3 s3e
−s3τ e−s3τ

1 s4 s4e
−s4τ e−s4τ

∣∣∣∣∣∣∣∣ . (11)

• The spectral value s1 is negative if and only if there
exists τ0 > 0 such that

a1(τ0) + s2 = 0. (12)

Sketch of the Proof:

• According to the G. Pólya and G. Szegö Theorem
Pólya and Szegő [1972], the number of real roots
of (8) is four, hence we investigate the existence of
four distinct real spectral values s1 > s2 > s3 > s4.
The coefficients of the quasi-polynomial function (8)

described by (10) and (11) are obtained by solving
the following system

s2
i +a1si+a0 +(α1si+α0) exp (−siτ) = 0, i = 1 . . . 4,

(13)
that we can represents under the more suitable form:

1 s1 s1e
−s1τ e−s1τ

1 s2 s2e
−s2τ e−s2τ

1 s3 s3e
−s3τ e−s3τ

1 s4 s4e
−s4τ e−s4τ


a0

a1

α1

α0

 =


−s2

1

−s2
2

−s2
3

−s2
4

 (14)

System (13) admits a unique solution because the
Vandermonde-type matrix in Q(τ) is invertible, for
every τ > 0. Indeed, its determinant is positive since
τ 7→ Q(τ) is increasing from 0 to ∞, with Q(0) = 0.
To get the formulas (10), then just apply the Cramer’s
rule.

• The negativity of the root s1 is shown through the
variation of the function

τ 7→ a1(τ) + s2. (15)

So, for all values of τ ∈ R+∗ (τ > 0), this later
function is continuous and increasing from −∞ to
−s1, from which we deduce that τ 7→ a1(τ)+s2 takes
a positive values if and only if s1 < 0. See Amarne
et al. [2018].

�

Due to the computation complexity of these time-delay de-
pendent coefficients, we consider only the case of equidis-
tance roots. This allows also to decrease the number of
parameters to handle. So, we suppose that the roots of (8)
are such that:

d = |s1 − s2| = |s2 − s3| = |s3 − s4|. (16)

Substituting the formula (16) in (10) and (11), the above
parameter coefficients can be rewritten as follows:

a1 (τ) =
1

edτ − 1

(
2s1 − 5d+ dedτ − 2s1e

dτ
)

a0 (τ) =
1

(edτ − 1)
2

(
6d2 − ds1e

2dτ + 6ds1e
dτ

−5ds1 + s2
1e

2dτ − 2s2
1e
dτ + s2

1

)
α1 (τ) = 2de−2dτ eτs1

e−dτ − 1

α0 (τ) =
−2de−2dτeτs1

(e−dτ − 1)
2

(
3d− s1 + s1e

−dτ) .

(17)

The following theorem gives conditions on the negativeness
of s1.

Theorem 4. The spectral values s1 is negative if and only
if one of the following equivalent conditions is satisfied:

(1) The spectral value s1 is explicitly given by:

s1 = −4
d

edτ − 1
.

(2) The delay τ takes the value

τ∗ =
1

d
ln

1

s1
(−4d+ s1) .

(3) The distance d between the real roots satisfies
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d =

[{
1

4
s1 −

1

τ
LambertW

(
l,
τs1

4
e

τs1

4

)
| l ∈ Z

}
\
{
2iπl

τ
| l ∈ Z

}]
∩ ]0,+∞[ .

Sketch of the Proof: We use the characterization of the
negativeness of s1 given by equation (12). Observe that,
as τ →∞
a1(τ) =

1

edτ − 1

(
2s1 − 5d+ dedτ − 2s1e

dτ
)
→ d− 2s1

with the property that τ 7→ a1 (τ) is bounded by −s1. So
if there exists τ∗ such that a1 (τ∗) + s1− d = 0, we obtain
that s1 < 0, and vis versa. Now, to get the value of s1, τ∗

and d respectively, we just have to solve the equation

4d− s1 + s1e
dτ = 0. (18)

Easy computation gives the value of s1 and τ?. For the
value of d, it can be calculated using the Lambert W
function since the unknown (d) appears both outside and
inside the exponential function. The Lambert W function
is defined as the multivalued function that satisfies

x = W (x)eW (x),

for any complex number x. Equivalently, it may be defined
as the inverse of the complex function f(x) = xex.
In order to solve equation (18) for d we rewrite it as follows:(

d− s1

4

)
e−τd = −s1

4
,

this implies that

−τ
(
d− s1

4

)
e−τ
(
d− s14

)
=
s1τ

4
e
s1τ

4 .

From the later equation, we have

LambertW

(
τs1

4
e
τs1
4

)
= −dτ +

τs1

4
. (19)

Hence

d =

[{
1

4
s1 −

1

τ
LambertW

(
l,
τs1

4
e

τs1

4

)
| l ∈ Z

}

\
{

2iπl

τ
| l ∈ Z

}]
∩ ]0,+∞[ .

�

4. ILLUSTRATIVE EXAMPLE

As an illustration of the presented result, we consider the
problem of stabilizing the Mach number of a transonic
flow in a wind tunnel. The analysis of transonic flows
is a challenging problem in compressible fluid dynamics,
since a full model of the flow would involve considering
the Navier–Stokes equations in a three-dimensional do-
main and boundary controls for temperature and pressure
regulation.

A simplified model was considered in Armstrong and Tripp
[1981] in order to analyze the response of the Mach number
of the flow to changes in the guide vane angle. Instead of
using a PDE model, propagation phenomena are modeled
through a time delay, leading to the time-delay system{

κm′(t) +m(t) = kϑ(t− τ0),

ϑ′′(t) + 2ζωϑ′(t) + ω2ϑ(t) = ω2u(t),
(20)

in which m, ϑ, and u represent perturbations of the Mach
number of the flow, the guide vane angle, and the input
of the guide vane actuator, respectively, with respect to
steady-state values.

The parameters κ and k depend on the steady-state
operating point and are assumed to be constant as long
as m, ϑ, and u remain small, and satisfy κ > 0 and k < 0.
Next, the parameters ζ ∈ (0, 1) and ω > 0 come from
the design of the guide vane angle actuator and are thus
independent of the operating point. The time delay τ0 is
assumed to depend only on the temperature of the flow.
Notice that, in the absence of control (u(t) = 0), the open-
loop system (20) is exponentially stable.

The design of the stabilizing feedback for (20) improving
its stability properties has been considered in Manitius
[1984], Boussaada et al. [2018]. The design we propose
here is a delayed PD controller which can be written
u(t) = β0x(t− τ1) + β1ẋ(t− τ1).

In closed-loop system, the corresponding characteristic
equation writes as follows:

∆(s, τ1) = (s− a)
(
(sβ1 + β0t)e

−sτ1 + 2ω sζ + ω2 + s2
)

Since the parameter a is fixed then, by focusing on the
second factor only, one gets:

∆4(s, τ1) = s2 + 2ω sζ + ω2 + (sβ1 + β0)e−sτ1 . (21)

To assign four equally distributed rightmost real spectral
values sk = −k for k ∈ [1, . . . , 4], we may use directly (17).

For instance, if ω = 1.2 and the damping factor ζ = 0.472,
then it is sufficient to set

β0 = −3087

6050
, β1 = − 343

3630
, τ1 = ln

(
22

7

)
. (22)

Figure 1 exhibits the spectrum distribution corresponding
to (21).

Fig. 1. Zeros distribution of quasipolynomial (21) with
ω = 1.2, ζ = 0.472 and the controller gains given
by .

5. CONCLUSION

A new dominancy result of the spectral values which are
not necessarily multiple is established through this paper
for a class of second-order time-delay system with a single
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delay. The stability analysis is based on the argument
principle and the Stépàn-Hassard formula which allow
counting the number of unstable roots of the correspond-
ing characteristic equation. Further, to show the poten-
tial applicability of the result, an illustrative example is
provided. The problem of stabilizing the Mach number
of a transonic flow in a wind tunnel is discussed and a
stabilizing delayed PD-controller is provided. This study
is not achieved yet since we considered only the case where
the real part of the quasipolynomial function has no real
roots. The other case remains under investigation.
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