
Self-Triggered Finite Time Pursuit
Strategy for a Two-Player Game ?

Ameer K. Mulla ∗

∗Department of Electrical Engineering, Indian Institute of Technology
Dharwad, Dharwad, Karnataka, India (e-mail: ameer@iitdh.ac.in)

Abstract: A continuous-time two player pursuit-evasion game is considered. The players have
double-integrator dynamics with bounded acceleration inputs. Unlike, conventional pursuit
strategies, it is assumed that, the pursuer does not have continuous access to the states of
the players. In this paper, we propose a self-triggered pursuit strategy, in which, the pursuer
can choose when the state-information needs to be updated next. The proposed strategy is
based on the time-optimal pursuit strategy for a game in which state information is available
continuously to both the players. When the bound on acceleration of the evader is smaller than
that of the pursuer, the proposed strategy guarantees capture in finite time, with finite number
of information updates.
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1. INTRODUCTION

Not long after the game theory was first proposed in
(Von Neumann and Morgenstern (1953)), Isaacs initi-
ated the study of differential games (Iscaacs (1954–1956)).
Pursuit–Evasion games form a widely studied class of dif-
ferential games, starting from (Pontryagin (1962); Ho et al.
(1965)). The initial research in such games was motivated
by the theoretical interests (Basar and Olsder (1999))
and application to air combats (Isaacs (1999); Neuman
(1990)). In the recent times, with the development of
robotics and autonomous vehicles, the theory of pursuit–
evasion games finds increasing applications in the areas
like surveillance (Grocholsky et al. (2006); Dhillon and
Chakrabarty (2003)), search and rescue missions (Chung
et al. (2011)), urban security (Tokekar et al. (2014); Dames
et al. (2017); Vinod et al. (2018)), wild-life monitoring
(Dunbabin and Marques (2012); Tokekar et al. (2013)),
and so on.

A pursuit–evasion game is a game of a kind, played
between of two players, a pursuer and an evader. The
objective of a pursuer is to capture the evader, who is
aiming to escape. In the continuous time framework, the
dynamics of the players are represented by differential
equations (Ho et al. (1965)). Time optimal pursuit–evasion
game is a game of degree where the pursuer tries to capture
the evader in the shortest possible time, while the objective
of the evader is to delay the capture as long as possible,
or escape (Ho et al. (1965)).

There are many variations of pursuit-evasion games stud-
ied in the literature. Analytical solutions have been pro-
posed for two player games with first-order and second
order dynamics (Isaacs (1999); Pontryagin (1962)). Typ-
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ically, the papers aim to either obtain a saddle point
solution, which involves computing equilibrium strategies
for both players (Isaacs (1999)) or derive pursuit strategies
using worst-case analysis (Guibas et al. (1999); Mulla and
Chakraborty (2018)). With development in the area of net-
worked control, multi-player games have fetched attention
in the recent years (Vinod et al. (2018); Oyler (2016)).
There is a wide spectrum of pursuit–evasion games formu-
lated in the context of various applications (see (Chung
et al. (2011); Basar and Zaccour (2018)) for a review of
recent work).

In this paper, a two player continuous time pursuit-
evasion game is considered, with, each player modelled
as a double integrator with bounded acceleration inputs.
Unlike common assumption in the literature (Basar and
Olsder (1999); Basar and Zaccour (2018)), the players
do not have continuous information about the states or
control actions of each other. Instead, the aim of this
paper is to design a need based feedback control strategy
for the pursuer, so that the pursuer can autonomously
decide when to take a feedback of the states and update
the control action, so as to capture the evader as quickly
as possible.

The information structure plays a key role in the design
of control strategies. Usually, the control strategies for
pursuit–evasion game are derived assuming continuous
information availability (Isaacs (1999); Basar and Olsder
(1999)). Some of the papers like (Guibas et al. (1999);
Mulla and Chakraborty (2018); Bopardikar et al. (2007))
consider visibility based information. The assumption of
continuous communication, with or without sensing lim-
itations, can be costly (e.g. in robotic systems, continu-
ous communication consumes significant battery power,
reducing total operation time), or sometimes unrealistic
(continuous communication may be limited by the band-
width or channel capacity) (Aleem et al. (2015b); Ding
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et al. (2018)). Moreover, since the control is implemented
using microprocessors which uses the periodically sam-
pled data, sampling frequency is a compromise between
the performance and communication and computational
load (Anta and Tabuada (2010)). Event-triggered con-
trol algorithms are used as need based control algorithms
to reduce the use of computation resource (Åström and
Bernhardsson (1999)), which are quite robust, but need
continuous monitoring of the states of the players. Self-
triggered control algorithms (Heemels et al. (2012); Anta
and Tabuada (2010)) are similar to the event triggered
control, in the sense that, they also update the control
signal based on occurrence of certain events. However,
unlike event-triggered algorithms, they do not monitor the
states continuously. The player estimates the time at which
the next event may occur and sample only at those time
instances.

Consistent event-triggered control and self-triggered con-
trol policies have been shown to perform better than peri-
odic control in terms of communication overheads and per-
formance for different applications like control of systems
subjected to noise and disturbances (Antunes and Balaghi
I. (2020)), networked control systems (Balaghi I. et al.
(2019)), consensus algorithms for heterogeneous systems
(Hu et al. (2017)) etc. A self-trigger pursuit algorithm is
proposed in (Aleem et al. (2015a)), which considers the
players with single integrator linear dynamics with fixed
speeds.

In this paper, a self-triggered pursuit strategy is proposed
for a pursuit-evasion game with players having double
integrator dynamics with bounded accelerations. Design-
ing pursuit strategies for systems with double integrator
dynamics is more complicated compared to the single inte-
grator case, since, for capture, not only the positions, but
also the velocities of the players need to match. Due to the
requirement of matching in both positions and velocities,
capture cannot be guaranteed in finite time with periodic
sampling, since, the players may miss the information that
the capture has occurred and move away from each other,
before next sampling instant. The main contribution of
this paper is design of a self-triggered pursuit strategy,
using the time-optimal pursuit strategy for a game with
continuous state information (Mulla et al. (2014)). The
proposed strategy guarantees capture in finite time with
finite number of samples. It may be noted that, min-max
time capture is possible if and only if continuous infor-
mation is available to the pursuer for a specific duration
time.

This paper is organised as follows: In Section 2, a brief
review of time optimal pursuit strategy with continuous
feedback is given, followed by the formulation of the prob-
lem considered in this paper. In Section 3, a self-triggered
pursuit strategy with a state-based self-trigger function
is proposed. The results are demonstrated through sim-
ulation examples in Section 4, followed by conclusion in
Section 5.

2. PRELIMINARIES AND PROBLEM DEFINITION

Consider a two player pursuit-evasion game. The dynamics
of the pursuer and the evader are, respectively, given by

ẋp(t) = Axp(t) + bup(t); and

ẋe(t) = Axe(t) + bue(t) (1)

where,A =

[
0 1
0 0

]
, b =

[
0
1

]
, xp(t) =

[
xp(t)
ẋp(t)

]
and xe(t) =

[
xe(t)
ẋe(t)

]
.

Here, xp(t) ∈ R and ẋp(t) ∈ R denote the position and
speed of the pursuer respectively. Similarly, xe(t) ∈ R
and ẋe(t) ∈ R, respectively denote the position and speed
of the evader. The initial conditions are xp(0) = xp0 =

[xp0 ẋp0]
T

and xe(0) = xe0 = [xe0 ẋe0]
T

. The acceleration
inputs to the players, up(t) ∈ R and ue(t) ∈ R, are
bounded as |up| ≤ α and |ue| ≤ β, for some α > β >
0. The game terminates when the pursuer captures the
evader. Note that, When players have double-integrator
dynamics, for capture, it is not enough that the distance
between them is close to zero, but their velocities also need
to be close to each other. If the velocities of the players
are not close to each other, the players will pass by each
other again increasing the distance between them. Thus,
the capture is defined as follows:

Definition 1. The evader is considered to be captured by
the pursuer at time tc, if |xp(tc)−xe(tc)| ≤ ε, and |ẋp(tc)−
ẋe(tc)| ≤ δ, for some predefined ε, δ > 0. Such a time, tc,
is called capture time.

If ε = δ = 0, it is called a perfect capture.

In a time-optimal pursuit-evasion game, the objective of
the pursuer is to capture the evader in the least possible
time, while the evader aims to avoid the capture, or delay
the capture for as long as possible. Under the assumption
of continuous measurement of the states, the time-optimal
strategies of the players are computed by considering the
relative dynamics the players (Mulla et al. (2014)). The
feedback control strategies of the players are summarised
next for the sake of completeness.

2.1 Time Optimal Pursuit with Continuous Feedback
(Mulla et al. (2014))

Using (1), the relative dynamics between the players is
given by

ẋ(t) = Ax(t) + bu(t) (2)

where, x(t) = [x ẋ]
T

= xp(t)−xe(t). The initial conditions

translate to x(0) = x0 = [x0 ẋ0]
T

= xp0 − xe0, and the
control input, u(t) = up(t)−ue(t). The state trajectory of
(2) is expressed as

x(t) = eAt +

∫ t

0

eA(t−z)bu(z)dz (3)

The input, u(t) can vary between ±(α + β). However,
because of the conflicting objectives of the players, the
optimal strategies of the players are computed using u(t)
bounded between ±(α−β) (Section 9.5 of Bryson and Ho
(1975)). In the framework of relative dynamics, capture
condition translates as x(tc) ∈ [−ε, ε] and ẋ(tc) ∈ [−δ, δ],
more specifically, for perfect capture, x(tc) = ẋ(tc) = 0.

Lemma 2. Under the assumption of continuous state feed-
back, the optimal feedback strategies of the players are
given by ufp(t) = α

α−βu
∗(t) and ufe (t) = β

α−βu
∗(t).

Here, u∗(t) is the feedback time-optimal control law for
driving the states of (2) from the given initial conditions
to the origin.
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Lemma 3. The feedback time optimal control u∗(t), is
bang-bang, switching between the extreme values±(α−β),
at most once according to the following:

u∗(x) = −sgn(ẋ)(α− β), if 2(α− β)x+ sgn(ẋ)ẋ2 = 0;

= −sgn(2(α− β)x+ sgn(ẋ)ẋ2)(α− β), otherwise.
(4)

When both the players use their time optimal strategies,
then the capture time,

t∗c =
±ẋ0 +

√
2ẋ20 ± 4x0(α− β)

α− β
. (5)

The sign depends on the sign of 2(α − β)x + sgn(ẋ)ẋ2.
If the pursuer sticks to its time optimal strategy ufp and

the evader unilaterally deviates from ufe , then the capture
time tc ≤ t∗c .

2.2 Some Additional Notations

In this section, we introduce a few more notations used in
this paper. Refer to Fig. 1 for reference.

When both the players use their time-optimal strategies,
the effective input to (2) is u∗. For some initial condition
x0, the state trajectory x(t), travels along the black dashed
curve shown in Fig. 1, as long as 2(α−β)x+sgn(ẋ)ẋ2 < 0.
As soon as 2(α − β)x + sgn(ẋ)ẋ2 = 0, the input u∗(t)
switches the sign and x(t) travels along the curve {2(α −
β)x+ sgn(ẋ)ẋ2 = 0. This curve is known as the switching
curve. The set of points on this curve is denoted by

S := {x : 2(α− β)x+ sgn(ẋ)ẋ2 = 0}.
Based on the sign of ẋ, the switching curve can be divided
in two parts, S+ and S−, both meeting at the origin.

Capture Region

ẋ

xε−ε

x(0)

Trajectory with
u(t) = (α− β)

u(t) = (α + β)
Trajectory with

Switching Curves
∂S−ε+

∂S−ε−

S+

∂S+ε−

M+

M−

S− S−

∂S+ε+

δ

-δ

S−

S +

S+

Fig. 1. State-space of the relative dynamics between the
players

The switching curve divides the state-space R2 is two sets:

M± := {x : u∗(x) = ±1} (6)

When the condition for capture is relaxed from perfect
capture to Definition 1, the sign of u(t) may change
anytime as long as x ∈ S+ ∪ S−, so that, for any initial
condition x0 ∈ R2, the capture occurs using bang-bang

input with at most one switch, irrespective of ue. We refer
S := S+ ∪ S− as switching region and define S± as:

S− := {x : ẋ ≥ 0; 2(α− β)(x+ ε)− (ẋ2 − δ2) ≥ 0 and

2(α− β)(x− ε) + ẋ2 ≤ 0},
S+ := {x : ẋ ≤ 0; 2(α− β)(x+ ε)− (ẋ2 − δ2) ≥ 0 and

2(α− β)(x− ε) + (ẋ2 − δ2) ≤ 0},

The boundary curves of S± are

∂S−ε− := {x : 2(α− β)(x+ ε) + (ẋ2 − δ2) = 0};
∂S−ε+ := {x : 2(α− β)(x− ε) + ẋ2 = 0};
∂S+

ε− := {x : 2(α− β)(x+ ε)− ẋ2 = 0} and

∂S+
ε+ := {x : 2(α− β)(x− ε)− (ẋ2 − δ2) = 0} (7)

Observe, from Fig. 1, that, the capture region is completely
enclosed in S.

Two more curves, S ± are indicated in Fig. 1, which are
defined as:

S − := {x : 2(α+ β)(x− ε) + (ẋ)ẋ2 = 0} and

S − := {x : 2(α− β)(x+ ε)− (ẋ)ẋ2 = 0} (8)

The context and significance of these curves will be evident
in the context Section 3.1.

2.3 Problem Definition

In this paper, we relax the assumption of continuous
feedback, and consider a different information structure,
where the pursuer, can autonomously sample the states
of the players, based on the necessity, so as to capture
the evader. Let tk ∈ R, k = 0, 1, 2, ... denote the kth

sampling instant with t0 = 0 and ti > tj for i > j.
Clearly, the control action of the pursuer, up(t) can be
updated only when the information is updated. For any
time, t ∈ [tk, tk+1), up(t) = up(tk).

We aim to identify a self-trigger function for the pursuer,
that determines when it needs a subsequent updated state-
information. Further, we devise a pursuit strategy, that
updates its control action, up, whenever new information
is available, so as to capture E.

Formally, the problem can be stated as follows:

Problem 4. For a pursuit-evasion game with the players
having dynamics (1),

(1) Identify a function, τ(x(tk)), such that,

tk+1 = tk + τ(x(tk)) for k = 0, 1, 2, ...

(2) Design a pursuit strategy, such that, using up(x(tk)),
the evader is captured in finite time with finite
number of information updates.

3. SELF-TRIGGERED PURSUIT

The optimal strategies, ufp and ufe , described in Section 2.1,
are the time-optimal control strategies of the players only
when continuous state feedback is available. For different
information structure, the optimal control strategies of the
players may be different than ufp(t) and ufe (t).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2803



3.1 Self-Triggered Pursuit Strategy

For designing a self-trigger function, we need to identify
the events due to which the pursuer needs to update its
control input so as to capture the evader.

Inspired by the feedback time-optimal pursuit strategy
discussed in Lemmas 2 and 3, we propose the following
self-triggered pursuit strategy:

usp(tk) = ufp(x(tk)), for k = 0, 1, 2, ...

usp(t) = usp(tk) for t ∈ [tk, tk+1) (9)

where, the sampling instants tk are computed using self-
trigger function τ(x(tk)) as tk+1 = tk + τ(xk) with t0 = 0.

3.2 Self-Trigger Function

The pursuer triggers sampling of state-information, when
it may be required to update uk(t) so as to ensure capture.
Using the definitions given in Section 2.2, the state-space
of (2) is divided in four regions. A self-trigger function is
designed based on the region in which, the state lies.

Region 1. Enclosed between S + and S−, i.e.

{x : 2(α+ β)(x+ ε)− ẋ2 < 0 & 2(α− β)x+ ẋ2 < 0)}
It may be verified, using (9), that if x(tk) lies in
this region, usp(tk) = α, irrespective of ue. Thus,
depending on the value of ue, u(t) ∈ [α− β, α + β].
Further, usp(t) should change at some t = tk+1, such
that, x(tk+1) ∈ S.
Observe that, S− is the switching region shown as
shaded area above x-axis in Fig. 1. Moreover, for
any x(tk) in Region 1, when up(t) = α, irrespective
of ue(t), the state trajectory x(t), t ∈ [tk, tk+1) lies
between the two extreme trajectories with u(t) =
α − β and u(t) = α + β (shown with black dashed
curve and red curve respectively in Fig. 1). For
t ≥ tk, based on ue(t), and hence on u(t), the state
trajectory x(t) travels through S− at different times.
The pursuer should change the input sign before x(t)
leaves S−. Thus, we choose

tk+1 = min
u

arg max
t

x(t) ∈ S−

i.e., tk+1 is the shortest time in which x(t) leaves
S−, when up(t) = α, irrespective of ue(t). Note that,
tk+1 is the time at which, the state trajectory, using
constant input u(t) = α+β to intersect the farthest
boundary of S−, i.e. ∂S−ε+. Hence, for Region 1,
the self-trigger function τ(x(tk)) := tk+1 − tk is
obtained by finding the intersection of curves x(t)
with u(t) = α + β and ∂S−ε+, and given by the
following closed form expression,

τ(x(tk)) = −
ẋ(tk)

α+ β
+

1

α+ β

√
α− β

2α
(ẋ(tk)2 − 2(α+ β)(x(tk)− ε)).

Region 2. Enclosed between S− and S −, i.e.

{x : 2(α− β)x+ ẋ2 > 0) & 2(α+ β)(x− ε) + ẋ2 < 0}
When x(tk) lies in Region 2, from (9), usp(tk) =
−α, irrespective of ue. Thus, for t ≥ tk, the state
trajectory x(t) either lies in Region 2 or enters
Region 1. From (9), usp(tk) needs to change sign

before x(t) goes out of the switching region S− in
Region 1. Thus, the next sampling instance tk+1 is
chosen as the first time instant at which the state
trajectory x(t) may intersect the farthest boundary
of S−, i.e. ∂S−ε−, with up(t) = −α. Thus, tk+1 may
be computed using the intersections of the curves
x(t) with u(t) = −(α + β) and ∂S−ε−, which gives
the self-trigger function τ(x(tk)) := tk+1 − tk as

τ(x(tk)) =
ẋ(tk)

α+ β

−
1

α+ β

√
β − α

2β
(ẋ(tk)2 + 2(α+ β)(x(tk) + ε)) +

α+ β

2β
δ2

To avoid repetition, the self-trigger functions for the re-
maining regions are stated directly. The same may be
computed using symmetry, and computation of the self-
trigger function for Region 1 and Region 2 respectively.

Region 3. Enclosed between S − and S+, i.e.

{x : 2(α+ β)(x− ε) + ẋ2 > 0 & 2(α− β)x− ẋ2 > 0)}

τ(x(tk)) =
ẋ(tk)

α+ β
+

1

α+ β

√
α− β

2α
(ẋ(tk)2 + 2(α+ β)(x(tk) + ε)).

Region 4. Enclosed between S+ and S +, i.e.

{x : 2(α− β)x− ẋ2 > 0) & 2(α+ β)(x− ε) + ẋ2 > 0}

τ(x(tk)) = −
ẋ(tk)

α+ β

−
1

α+ β

√
β − α

2β
(ẋ(tk)2 − 2(α+ β)(x(tk)− ε)) +

α+ β

2β
δ2

Remark 5. For the states close to the capture region, for
x(tk) in Region 2 (or Region 4), if

β − α
2β

(ẋ(tk)2 − 2(α+ β)(x(tk)− ε)) +
α+ β

2β
δ2 < 0

(or β−α
2β (ẋ(tk)2 − 2(α+ β)(x(tk)− ε)) + α+β

2β δ2 < 0), then

τ(x(tk)) :=
ẋ(tk) + δ

α+ β

(or τ(x(tk)) := −ẋ(tk)+δ
α+β ).

3.3 Self-Triggered Finite Time Pursuit

Theorem 6. The self-triggered pursuit strategy proposed
in (9), with the self-triggered function proposed in Section
3.1 above, achieves capture in finite time using only a finite
number of information updates.

Proof: Consider the initial conditions in Region 1.

The theorem may be proved in two stages:

Stage 1: x(tk) /∈ S+

When x(tk) lies in Region 1 but, x(tk) /∈ S+, usp(t) = α.
Based on ue, the input to the relative dynamics, u ∈ [α−
β, α + β] and hence x(t) follows some trajectory that lies
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between the red curve (corresponding to u = α + β) and
black-dashed curve (corresponding to u = α − β), shown
in Fig. 1. From (3), it may be verified that, for any such
input u, the state trajectory evolves such that, for t > t′,
ẋ(t) > ẋ(t′), in fact, as usp is constant between tk and tk+1,

ẋ(tk+1) = ẋ(tk) + usp(tk)τ(x(tk)).

Further, it can also be verified that

dτ(x)

dẋ
< 0.

Moreover, observe that, for some tk, if x(tk) ∈ S−, then

τ(x(tk)) = − ẋ(tk)α+β + 1
α+β

√
ẋ(tk)2 − α2−β2

α ε > 0, for ε > 0.

Since there is a finite increment in the value of ẋ, during
each interval between the sampling times, and the total
change in ẋ from the initial condition to the case when x
is pushed in S− ∩ Region 2, is also finite, the number of
samples triggered by the pursuer, are also finite.

Stage 2: x(tk) ∈ S− ∩ Region 2

In this case, according to (9), usp = −α, depending on ue,

x may continue to be in S−∩ Region 2, or may be pushed
back to Region 1. However, irrespective of ue, note that,
dx
dt > 0. Further, it can be verified that, for x ∈ S−,

dτ(x)

dx
> 0.

That is, as x approaches the origin, the interval between
the samples actually increases. Further, using Remark 5, it
may be shown that, for δ > 0, the number of information
updates needed before capture is finite, and so is the
capture time.

If the initial conditions lie in Region 2, the arguments
identical to Stage 2 above, prove the theorem.

The theorem may be proved for the initial conditions in
Region 3 and 4 using symmetry. �

4. SIMULATIONS

Consider a pursuit-evasion game starting from the initial
conditions of the players such that x(0) = xp0 − xe0 =[
−2
−2

]
. The capture is defined as in Definition 1, with

ε = 0.1 and δ = 10−3. We demonstrate the performance
of the self-triggered pursuit algorithm is three situations.

(1) The evader employs feedback worst-case strategy,
such that, ue(t) = −sgn(2x(t) + sgn(ẋ(t))ẋ(t)2). The
trajectory of the difference between the states of the
players, x(t) is demonstrated in Fig. 2. In this situ-
ation, x(0) /∈ S. Using the pursuit strategy (9), x(t)
enters S in t = 4, the pursuer updates the information
10 times before x(t) enters S. Once x(t) ∈ S, due to
the control strategies of the players, x(t) never leaves
S and the capture occurs at t = 6, which is the min-
max time-to-capture with continuous feedback. The
pursuer triggered 62 times in total for information
updates before capture.

(2) With the proposed control strategy of the pursuer,
a constant strategy of the evader ue(t) = 1 for all t

Fig. 2. x(t) when ue(t) = ufe (t).

causes more delay in capture compared to the worst
case feedback strategy. As demonstrated in Fig. 3,
every time x(t) ∈ S, the trajectory x(t) is driven
maximally away from S till the next sampling instant.
This increases the time-to-capture to 5.6388. In this
case, the pursuer samples the states 81 times.

Fig. 3. x(t) when ue(t) = 1.

(3) The evader uses some random inputs ue(t) for all
the time. In the instance demonstrated in Fig. 4, the
pursuer captures the evader in t = 3.6157. Unlike
previous two situations, x(t) enters S in t = 1.5545
with only four data updates. Once x(t) ∈ S, based
on the evader’s control action, sometimes x(t) stays
in S, while at some others instants, it is pushed out
of S. The pursuer is triggered 56 times for sampling
to update its information.

Fig. 4. x(t) when ue(t) is random.

Remark 7. In this simulation, a relatively high value of
ε is chosen to demonstrate the behaviour of the state
trajectory properly. For smaller values of ε, the pursuer
is triggered more frequently for information and control
action update.
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5. CONCLUSION

A self-triggered pursuit policy is proposed so as to enable
the pursuer to sample the information on need basis and
reduce communication overhead. The proposed strategy
guarantees capture in finite time, using only a finite
number of information updates. It is conjectured that, the
proposed self-triggered pursuit strategy is a min-max time
pursuit strategy, under the given information structure.
An immediate extension of this work may be to adapt
the pursuit strategy to develop self-triggered consensus
tracking problems, which is a work in progress. Extension
of the proposed algorithm to multi-player games may also
be considered.
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