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Abstract: This paper proposes an efficient method for wind power generation forecasting by Long Short 

Term Memory (LSTM) of Deep Neural Network (DNN). It is one of recurrent neural networks that make 

use of past output of the network, but replaces hidden layers of the conventional networks with the 

LSTM Block with memory and three gates of input, output and forget.  Artificial and Deep Neural 

Networks are inclined to overfit leaning data in learning process. This paper proposes a modified LSTM 

that considers to prevent LSTM from overfitting with two strategies. One is Dropout to exclude some 

nodes randomly and change network topology while the other is Weight Decay that evaluates smaller 

weights between neurons. The effectiveness of the proposed method is demonstrated for real data of wind 

power generation.  

Keywords: Renewable energy systems, Wind power generation, Forecasts, Time series analysis, Deep 

Neural networks, LSTM, Overfitting 



1. INTRODUCTION 

The penetration of wind power generation has been widely 

spread in the world. Recently, China, USA and Germany 

have taken the leadership to introduce wind power generation 

into power systems.  Wind power generation has advantage 

that the generation is available for 24 hours if the wind blows 

and it has better generation efficiency of at most about 60% 

than other renewable energy. On the other hand, it has 

drawbacks that the generation output is significantly affected 

by weather conditions, and it generates noise. As a recent 

trend, offshore wind power generation photovoltaic 

generation is popular since it is hard to find appropriate 

places for wind power generation. As wind power generation 

has been introduced into power systems, power system 

operators are concerned with generation schedule due to the 

existence of variable energy sources with uncertainties. As a 

result, it is very important to forecast wind power generation 

output with higher accuracy.  So far, a lot of the methods 

have been proposed to deal with wind power generation 

forecasting. They may be divided into two categories: 

1) Statistical methods such as Autoregressive Integrated 

Moving Average (ARIMA) model (Box, et al., 2015), 

Generalized Autoregressive Conditional Heteroscedastic 

ally (GARCH) model (Bollerslev, 1986), etc. 

2) Machine learning such as Artificial Neural Network 

(ANN), Fuzzy Inference, Kernel Machines like Gaussian 

Process (Mori & Ohmi, 2005; Mori & Kurata, 2008), etc. 

Item 1) is based on classical signal processing techniques and 

does not have the appropriate function of nonlinear 

approximations. On the other hand, item 2) provides better 

solutions than item 1) due to good nonlinear approximations. 

In this paper, the area of item 2) is discussed. A recurrent 

network model was proposed for short-term wind power 

generation forecasting (Kariniotakis, et al., 1996). A Multi-

Layer Perceptron (MLP)-based method was developed for 

wind power turbine output forecasting (Li, et al., 2001). Mori 

and Okura presented a wind speed prediction method with 

Radial Basis Function Network (RBFN) (Mori & Okura, 

2017). 

In recent years, Deep Neural Network (DNN) (Hinton & 

Salakhutdinov, 2006; Goodfellow, et al., 2016) is one of 

attractive research topics. Traditionally, the number of layers 

is limited to three due to the difficulty of learning, but the 

breakthroughs have brought about neural networks with four 

layers and more so that the model accuracy is improved. Fig. 

1 shows a classification of DNN, four types of DNN are 

shown. Looking at applications of DNN to wind power 

generation or wind speed forecasting, the following works are 

found: A Deep Belief Network (DBN) based method was 

proposed to predict wind power generation output (Tao, et al., 

2014), where DBN (Hinton, Osindero, & Teh, 2006) was 

historically the first DNN model. It may be regarded as an 

extended model of Restricted Boltzmann Machine (RBM) 

with two layers in a way that RBM is modified to have three 

and more layers by the multistage decision. A Long Short 

Term Memory (LSTM) based method was developed for 

wind generation output forecasting (Wu, et al., 2016). It is an 
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extension of Recurrent Neural Network (RNN) that has a 

feedback loop in feedforward neural networks. It improves 

the performance of RNN by replacing hidden layer with a 

new unit called LSTM block (Hochereiter & Schmidhuber, 

1998; Gers, et al., 1999; Baytas, et al., 2017). An 

Autoencoder-based method was proposed for wind speed 

forecasting (Mezaache & Bouzgou, 2018). The method 

combined Autoencoder of pre-training with Extreme Leaning 

Machine (ELM) of predictor, where ELM is feedforward 

neural network with the random weights between input and 

hidden layers and the analytical weights between hidden and 

output layers (Huang, et al., 2006). Afterward, Stacked 

Denosing Autoencoder was proposed for wind power 

forecasting (Yan, et al., 2018), where it is an extension of 

Autoencoder to increase the number of layers and make 

Autoencoder more robust by adding noises to learning data.  

In this paper, an efficient LSTM method is proposed for wind 

power generation forecasting. LSTM is attractive in a way 

that unlike the conventional RNNs, long term memory is 

maintained. The difference between the proposed LSTM and 

the conventional one is that two strategies are presented to 

suppress model overfitting for learning data. One is Weight 

Decay (Plaut, Nowlan & Hinton, 1986) that evaluates a few 

parameters to suppress overfitting while the other is Dropout 

(Srivastava, et al., 2014) that excludes some nodes in neural 

networks to make the model simple and prevent them from 

overfitting. It is expected that the proposed method is more 

robust for unknown data. The proposed method is 

successfully applied to real data of wind power generation. 

 

 

2. Recurrent Neural Networks 

This section describes recurrent neural networks (RNNs) 

with feedback loop that give information on historical data of 

time series.  The use of ANNs has been widely spread in 

engineering areas due to the good approximation of nonlinear 

systems.  The applications of ANNs to power systems may 

be divided into the following categories (Mori, 1996): 

1) Multilayer Perceptron (MLP) 

2) Hopfield Net 

3) Kohonen Net 

4) Others 

In item 1)-4), MLP is the most popular as a pattern 

recognition technique. The types of MLP may be divided into 

two categories: 

i) Feedforward MLP 

ii) Feedback MLP 

So far, type i) has been applied to load forecasting, static and 

dynamic security assessment, voltage stability assessment, 

fault detection, voltage and reactive power control, etc. On 

the other hand, type ii) is referred to as RNN and has been 

applied to problems of image processing, speech recognition, 

machine translation, time-series forecasting, etc.  It has a 

feature to make use of information on back and forth states 

by adding feedback loop between layers through a new 

context layer. In other words, it is easy to grasp the dynamics 

of time series with memory.  Now, let us consider the 

predication problem of time-series as follows: 

         𝑦𝑡+1 = 𝑓(𝑥𝑡)                                                    (1) 

where     

yt+1: output variable at time t+1 

𝑓(·): nonlinear function of  · corresponding to RNN 

    𝑥𝑡 : input variable vector at time t                                                        

There is some cases in simple RNNs where the new context 

layer should be placed in the network. The Jordan recurrent 

neural network (Jordan, 1986) (see Fig. 2) keeps the context 

layer between hidden and input layer while the Elman model 

(Elman, 1989) has the hidden layer to return the output 

variables to it through the context layer (see Fig.  3). in 

speech recognition, the Elman recurrent neural network has 

been widely spread due the good performance. As far as 

power systems are concerned, RNNs have been developed for 

time-series prediction such load forecasting (Mori & 

Ogasawara, 1993). However, RNNs have a problem called 

vanishing gradient problem that the leaning is difficult to 

carry out because error signals are not transmitted in the 

algorithm of the back rogation through time and the gradients 

become much smaller. For this reason, studies on RNNs have 

not been done for a while positively. 

 

  

 

 
 

 

Note) AE: Autoencoder, CNN: Convolutional Neural 

Network, DBM: Deep Boltzmann Machine, DBN: Deep 

Belief Network, DNN: Deep Neural Network, LSTM: 

Long Short-Term Memory, RBM: Restricted Boltzmann 

Machine  
 

Fig. 1. Classification of DNN. 
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3. LSTM 

In this section, LSTM is explained (Hochereiter & 

Schmidhuber, 1998; Gers, et al., 1999; Baytas, et al., 2017). 

As mentioned in the previous section, the conventional RNNs 

have a drawback on the learning process that they do not deal 

with long term memory. To overcome it, LSTM was 

developed to make use of the LSTM Block with memory and 

three gates of input, output and forget. That allows one to 

deal with the dynamics of complicated nonlinear time-series 

appropriately. Fig. 4 shows the structure of LSTM, where 

three layered networks are connected through the hidden 

layer and the horizontal axes is shows time evolution. 

Compared with the conventional RNNs, LSTM has the 

following features: 

1) To possess both long and short term memory that the 

conventional RNNs do not keep 

2) To develop special hidden nodes called LSTM Block 

that consists of a cell including output, input, forget gates, 

etc.(Input and output gates play a key role to determine 

whether input and output of one-step back should be 

accepted or not, respectively. Also, forget one is needed 

to update the cell state in case where input pattern 

changes,) 

3) To set the weight matrix for regressive input as the unit 

matrix to avoid vanishing gradient problems 

The output of LSTM may be written as 

𝑚𝑡,𝑖,𝑢 = 𝑚𝑡−1,𝑖,𝑢 + 𝑧𝑡−1,𝑖,𝑢                                                (2)                                                                  

where 

𝑚𝑡,𝑖,𝑢: output of it memory at layer u at time t 

𝑧𝑡−1,𝑖,𝑢: input from neighbor layer at time t 

 

It should be noted that the partial derivative coefficient for 

mt−1,i,u  is the unity, which implies that LSTM does cause 

vanishing gradient problems. However, some modifications 

are required due to the simple equation in (2) so that LSTM 

Block is implemented as shown in Fig. 5. 

The mathematical formulation of LSTM Block may be 

written as 

 

i  

 

Fig. 2. Jordan recurrent neural network. 

 

 

 
 

Fig. 3. Elman recurrent neural network. 
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Fig. 4. Structure of LSTM. 

 

 
 

Fig. 5. LSTM Block. 
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𝐿𝑆𝑇𝑀 𝐵𝑙𝑜𝑐𝑘 𝑜𝑢 𝑝𝑢    𝑡 = 𝑂𝑡 ∗  𝑎𝑛 ( 𝑡)                        (3) 

𝑂𝑢 𝑝𝑢  𝑔𝑎 𝑒 𝑂𝑡 = 𝜎(  𝑢𝑡 ∗ 𝑥𝑡 +   𝑢𝑡   𝑡−1 + 𝑏 𝑢𝑡)       (4) 

Cell State:  𝑡 = 𝑓𝑡 ∗  𝑡−1 + 𝑖𝑡 ∗  𝑡                                       (5) 

𝑤 𝑒𝑟𝑒  𝑡 =  𝑎𝑛 (  ∗ 𝑥𝑡 +     𝑡−1 + 𝑏 )                       (6) 

𝐹𝑜𝑟𝑔𝑒  𝑔𝑎 𝑒 𝑓𝑡 = 𝜎(    ∗ 𝑥𝑡 +       𝑡−1𝑏   )             (7) 

𝐼𝑛𝑝𝑢  𝑔𝑎 𝑒 𝑖𝑡 = 𝜎( 𝑖 ∗ 𝑥𝑡 +  𝑖   𝑡−1 + 𝑏𝑖 )                 (8) 

 

4. PROPOSED METHOD 

In this paper, a modified LSTM is proposed for wind power 

generation forecasting. Time series of wind power generation 

has high nonlinearity so that the volatility is higher than 

others in power systems. If ANN-based models are employed 

to predict one-step ahead wind power generation output, the 

constructed models are inclined to overfit learning data so 

that they do not work so well at the implementation phase. 

The proposed method introduces a couple of strategies into 

LSTM to avoid overfitting: One is Weight Decay while the 

other is Dropout. 

Regularization 

This paragraph describes regularization that was developed to 

prevent artificial neural networks (ANNs) from overfitting 

learning data. The reasons why ANNs encounter it may be 

given as follows: 

a) The weights between neurons are large. 

b) The number of weights is large. 

c) The number of learning data is not sufficient 

Regularization is related to item1) in a way that the weights 

are maintained to be small and plays an important role to 

keep balance between the model fitting for learning data and 

the model complexity. In other words, it allows one to 

construct the simple reasonable model like AIC (Akaike’s 

Information Criterion) (Akaike, 1974). Regularization may 

be expressed as the sum of the model errors and the L1 or L2 

regularization term that corresponds to the penalty term, 

where the L1 and L2 regularization mean the L1 and L2 norm 

of the weight vector, respectively. As one of the 

regularization techniques, Weight Decay plays a key role to 

prevent the model from overfitting (Reed, 1993). The cost 

function with Weight Decay may be written as  

 

𝐹 =
1

2
∑ (𝑦𝑗 −  𝑗)

2𝐽
𝑗=1 + 𝜆∑ 𝑝𝑘

2𝐾
𝑘                                            (9) 

where 

F : cost function 

J : number of learning data  

yj:  j-th output  

tj : teaching signal for data yj 

𝜆: Penalty coefficient 

𝐾: Number of parameters 

𝑝𝑘: parameter k 

 

Dropout 

The idea of Dropout (Srivastava, et al, 2014) was developed 

to deal with overfitting of ANNs. It prevents them from 

overfitting by excluding some nodes and cutting weights in a 

way that the degree of freedom is decreased to improve the 

generalization ability   as shown in Fig. 6, where the grey and 

black circles show nodes with and without the node 

connections, respectively. Fig. 6(a) and (b) depict connected 

networks with and without Dropout, respectively. The 

method has the following features: 

-It may be regarded as another method for regularization 

mentioned in the previous paragraph. 

-It is different from other methods since it does not rely on 

features by dropping out some nodes. 

- ANNs are learned by the conditions where some neuron 

units at input and hidden layers are randomly excluded from 

fully-connected ANN with the Bernoulli distribution, which 

means that different ANNs are constructed at each learning 

step and computational effort becomes large. 

- The independent random noises are added to input variables 

at the learning so that robust ANNs are obtained under 

partially connected network configurations. 

 

 
 

(a) Fully-connected network without Dropout. 

 

 

 
 

(b) Partially-connected network with Dropout. 

 

Fig. 6.  Structure of LSTM. 
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- The learning scheme may be considered averaging over a 

lot of ANNs, which may be regarded as Ensemble Learning 

in Machine Learning (Zhou, 2012). 

 

5.  SIMULATION 

5.1 Simulation Conditions 

a) This paper dealt with 10-minute ahead The proposed 

method was tested for real data of wind firm, Calgary, 

Canada. The number of learning and test data are given as 

follows: 

No. of learning data: 1008, No. of test data: 432 

The sampling time was 10 [min]. The proposed model used 

the following input and output variables: 

Input variables:  

x1
t –xt-k

t: wind power generation output at time t-k (k=1,2, 

…20) 

y1
t+1: 10minute ahead wind power generation output at time 

t+1 

 b) The proposed method was compared with the 

conventional methods. For convineience, the following 

methods were defined 

Method A: MLP 

Method B: RNN (Elman Model) 

Method C: LSTM 

Method D: LSTM +Dropout 

Method E: LSTM +Weight Decay 

Method F: LSTM + Dropout+ Weight Decay 

c) Table 1 shows parameters of Methods A-F that were tuned 

up by preminarily simulation. 

 

5.2 Simulation Results 

Table 2 gives the average, maximum forecasting errors and 

standard deviation (SD) of errors. It should be noted that 

values in parentheses show the errors normalized by the error 

of MLP. Figs. 7-9 give the average, maximum errors, and SD, 

respectively.  A comparison between Methods A and B 

shows that RNN is better than MLP. Looking over Method C, 

it can be seen that LSTM provides better results than RNN. 

Compared with D, Method E outperformed it because 

Dropout has better performance than Weight Decay as the 

overfitting prevention method. Method F of the proposed 

method gave better results in the average, maximum 

forecasting errors and the standard deviation (SD), 

respectively. Method F reduced the average, maximum 

forecasting errors and the standard deviation of method by 

56%, 64%, and 56%, respectively. It is concluded that the 

proposed has better results than others. 

 

Table 1. Parameters of each method 

Methods 
Learning  

rate 

# of 
hidden 

units 

Dropout 

rate 

Penalty 

parameter 

 

# of 

iterations 

A 0.9 30     20000 

B 0.01 30     10000 

C 0.01 30     10000 

D 0.01 50 0.1 0.01 15000 

E 0.01 50   0.01 15000 

F 0.01 50 0.1 0.01 15000 

 

 
Table 2. Forecasting errors of each method 

Methods Ave.[％] Max.[％] SD 

A 5.78（１） 54.24（1） 6.03（1） 

B 3.52（0.6） 28.7（0.56） 3.61（0.59） 

C 3.28（0.56） 24.2（0.47） 3.34（0.55） 

D 2.76（0.47） 
   21.3

（0.41） 
2.9（0.48） 

E 2.85（0.49） 21.69（0.42） 3.04（0.50） 

F 2.55（.44） 18.87（0.36） 2.71（0.44） 

Note) Values in parentheses indicate data normalized by that of MLP. 
 
 

 

 
 
Fig. 7. Average errors of each method. 

 

 

 
 

Fig. 8.  Maximum errors of each method. 
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6. CONCLUSIONS 

In this paper, a new method has been proposed for wind 

power generation forecasting. The proposed method makes of 

Long Short Term Memory (LSTM) of Deep Neural Network 

(DNN) has better performance for time-series forecasting. To 

improve the performance of LSTM, this paper presented a 

couple of strategies to improve the performance of LSTM in 

terms of preventing the forecasting model from overfitting. 

One is Weight Decay for preventing the model from 

overfitting for unknown data by evaluating smaller 

parameters. The other is Dropout for improving the 

forecasting model by excluding some neurons at input and 

hidden layers at the learning process randomly. The 

effectiveness of the proposed method was tested for real data 

of the wind firm. The simulation results have shown that the 

proposed LSTM with two strategies provides better results 

than other LSTM in terms of the average, maximum errors as 

well as the standard deviation of the forecasting errors. 
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