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Abstract: This paper highlights some limitations of the VFH+ algorithm on the domain of
local obstacle avoidance. An enhanced algorithm dubbed VFH+D is proposed, which considers
a different way of calculating the obstacle vector magnitude and a decay algorithm for dynamic
obstacle avoidance. Experiments were conducted to compare both algorithms on two different
mecanum wheeled robots, VFH+D achieved higher average speeds and lower distance traveled
to reach the goal.
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1. INTRODUCTION

Obstacle avoidance algorithms are an essential aspect in
mobile robot navigation, as they allow the robot move-
ment in the environment while preventing collisions when
following a path or achieving a goal. These algorithms are
used by the path planning methods, along with the robot
position and the movement area map, to calculate and
follow the best route in order to reach the target while
avoiding obstacles. This behavior is essential in multiple
navigation applications such as car collision avoidance for
automated road safety (Adla et al., 2013; Dahl et al.,
2019), autonomous vehicles (Lefebvre et al., 2004; Houjie
Jiang et al., 2016; Wang et al., 2019), unmanned marine
vessels (Chen and Li, 2017), mobile robots, both individual
(Miró et al., 2008; Alajlan et al., 2015; Almasri et al., 2016)
and for cooperative groups (Soriano et al., 2015; Alonso-
Mora et al., 2018).

In order to safely navigate the environment, path planning
algorithms usually divide the problem in two main compo-
nents: A Global navigation planner that uses optimization
techniques to obtain the best route to the goal in the
available map of the environment (high level planning)
(Marder-Eppstein et al., 2010; Pandey et al., 2017; Patle
et al., 2019), and the Local navigation planner, that gener-
ates velocity commands to follow the global plan as closely
as possible, while considering the kinematic constraints
and using the sensor data to dynamically detect changes
in the environment and obstacles in order to avoid them
(Miró et al., 2008; Patle et al., 2019). Among the first
and most simple obstacle avoidance methods used as local
planners are the bug algorithm and its variants (Lumelsky
and Stepanov, 1987; Lumelsky and Skewis, 1990; Ng and
Bräunl, 2007; Maŕın et al., 2010) that avoid static obstacles
by following their perimeter until the path is clear. There
? The financial support from the University of Costa Rica, under
the grant 322-B8-298, is greatly appreciated.

are also the pure reactive Braitenberg inspired algorithms
(Braitenberg, 1986) that will turn in the presence of static
obstacles, but some versions (Shayestegan and Marhaban,
2012) also implement additional rules to retake the path
to the objective.

More advanced local planners have been developed that
can consider the kinematic, dynamic and other constraints
of the mobile platforms while being fast and robust in the
obstacle evasion (Berns and von Puttkamer, 2009), such as
the Dynamic Window Approach (DWA) (Fox et al., 1997),
the Timed Elastic Band (TEB) (Roesmann et al., 2012),
the Follow the Gap Method (FGM) (Sezer and Gokasan,
2012) and the Vector Field Histogram (VFH) (Borenstein
and Koren, 1991) algorithms. All of these methods define,
in real time, the required robot velocities, using different
strategies to represent the environment from the sensor
data, in order to extract from it the obstacle information
and use it to determine the best robot movement to avoid
the obstacles and transit the available free space (Shim
and Kim, 2018; Cybulski et al., 2019).

The original VFH (Borenstein and Koren, 1991) searches
for openings among obstacles that are big enough for the
robot to travel and avoid collisions, while building a local
map of the encountered obstacles using rangefinder sensors
to estimate the certainty of their position in a grid. An
improvement of this algorithm, VFH+, was proposed in
(Ulrich and Borenstein, 1998) that takes into consideration
the robot size and improves the steer angle selection using
a polar histogram, that masks the sectors behind the
detected obstacles so they are not assigned as open space.
Another improvement, VFH*, was proposed in (Ulrich
and Borenstein, 2000) that defines a look ahead direction
search with the A* pathfinding algorithm, improving the
obstacle detection in some cases, but also being closer to a
global path planner without guaranteeing the optimality
of the solution.
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As the VFH+ is fast and robust in avoiding obstacles,
it is commonly used as a local planner (Yim and Park,
2014; Sary et al., 2018) in combination with other global
planning methods to provide a reliable solution to the
navigation problem (Pandey et al., 2017). The main disad-
vantage of the VFH+ algorithm is its inability to perform
well in environments with dynamic obstacles (Miró et al.,
2008). In order to overcome this limitation, the algorithm
is usually combined with other techniques, such as the
Kalman filter (Guo et al., 2010; Kim et al., 2010), in order
to predict obstacle movement, the aforementioned showing
promising results but demonstrated only by simulations.

In this work we analyze some of the limitations of the
VFH+ algorithm and propose a new and improved version
called Vector Field Histogram + Dynamic (VFH+D) that
overcomes these deficiencies. The proposed algorithm has
the capacity of avoiding dynamic obstacles, while also
improving the robot speed and success rate in reaching
the goal point while avoiding collisions, as shown by
the experiments conducted on an omnidirectional robot
that implements the proposed algorithm in the Robot
Operating System (ROS).

2. VFH+ ALGORITHM AND LIMITATIONS

The VFH+ algorithm as defined on Ulrich and Borenstein
(1998) uses five data structures, the data is processed
sequentially from one data structure to the next: two
2-dimensional grids and three 1-dimensional polar his-
tograms. The following is a summary of the data flow.

• The map grid or obstacle grid C: a 2-dimensional grid
that represents the obstacles in the world reference
frame, each cell holds a certainty value between 0 and
cmax. A cell’s certainty value is increased by 1 for each
sensor reading that detects an obstacle in that cell.
• The active window Ca: a much smaller 2-dimensional

grid that follows the robot. Each cell holds an “ob-
stacle vector” that consists of a magnitude mi,j and
direction βi,j , where mi,j is a function of the cells
distance to the robot’s center di,j and corresponding
certainty value ci,j as described by (1), and βi,j is the
direction from the robot’s center to the cell.

• The primary polar histogram Hp: a 1-dimensional
histogram of the angular sectors of width α around
the robot. Each sector holds a polar obstacle density
which is the sum of the magnitude of all the cells in
Ca that fall within that sector. An enlargement angle
for cells is also defined based on the robot’s radius rr
and a parameter for minimum obstacle distance rs,
so a single cell can add to more than one sector.

• The binary polar histogram Hb: a 1-dimensional
histogram that maps each sector on Hp to 0 (free)
or 1 (blocked) based on its value Hp

k . Two thresholds

τlow and τhigh are defined, if Hp
k < τlow then Hb

k = 0,

if Hp
k > τhigh then Hb

k = 1, otherwise Hb
k remains

unchanged from its previous value.
• The masked polar histogram Hm: additional sectors

in Hb are blocked based on the robot’s direction of
movement and minimum steering radius.

• Consecutive free sectors in Hm are classified as wide
or narrow valleys according to their size, and candi-
date directions for each valley are then added to a list.

Fig. 1. Trail left by moving obstacle near a wall on the
occupancy grid, darker cells have higher occupancy
values

Fig. 2. Several grid cells with maximum occupancy value
near a wall, red dots are the actual laser ranger
readings at a given time.

The steering direction is determined by applying a
cost function to all candidate directions and selecting
the one with the least cost.

mi,j = c2i,j(a− b · d2i,j) (1)

For equation (1), Borenstein suggests choosing the param-
eters a and b such that mi,j in border cells is equal to
c2i,j .

While working with the VFH+ algorithm in practice
several limitations became evident. The first was the
inability of the algorithm to handle moving obstacles.
Grid cells in the obstacle grid are updated to increase
their certainty values when objects are detected, however,
no mechanism for decreasing these same cells values is
described. As such, in situations where there are moving
obstacles the algorithm could deem large parts of the grid
to be occupied, as shown in Fig. 1. The cells are actually
free, but the “trails” of moving obstacles were left in the
occupancy grid.

Another related problem happens when the robot’s odom-
etry has poor accuracy or is badly configured, or when the
robot’s wheels slip. Differences between the approximated
and actual position can cause the occupied cells to “blur”
into adjacent cells as demonstrated in Fig. 2.

In addition to the former, additional tests also brought
other undesirable behaviour to light. Many of our tests
were done in a relatively small (7 × 5 m) enclosed arena.
We noticed that the algorithm tended to perform poorly
close to the walls, especially when the direction of move-
ment was perpendicular to the wall. Also, the robot often
avoided walls that were far away as much as obstacles that
were right next to it, adjusting parameters didn’t seem to
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correct this. After analyzing the effects of the obstacle grid
on the polar histogram for different parameter configura-
tions the team came up with some hypotheses to explain
this behaviour.

First, the sensors used for obstacle detection should be
considered, in our case, scanning laser rangefinders in the
front and back of the robot. In general, cells tended to
become saturated in regards to their occupancy value very
quickly (in less than a second), such that all cells had
either the maximum occupancy value or zero. In turn,
the magnitude of cells in the active window was
usually the maximum value possible given the cells
distance as described by equation (1). This is due
to the high sampling rate and resolution of the laser
rangefinders sensors used.

Since the polar obstacle density of each circular sector is
calculated as the sum of the magnitudes of all cells inside
that sector, and cells are arranged in a simple square grid,
there are a lot more cells that contribute to the value of a
sector further away from its origin. Because of this and the
way Hp is calculated with (1), larger obstacles that are far
away and closer to the border of the active window tend to
drive the polar obstacle density of a single sector to values
as high or higher than smaller obstacles much closer to the
robot, this is considered as an undesired behaviour.

The former situation is exemplified in Figs. 3, 4 and 5,
which correspond to a configuration with a wall to the left
and an obstacle to the right of the robot (the white cells are
occupied by the robot, the black cell is the robot’s center).
Notice in Fig. 4, the magnitude of obstacle vectors in the
active window is lower on cells farther from the robot, as
expected from equation (1). However, the polar histogram
has a higher obstacle density in the direction of the wall,
as show in Fig. 5.

3. PROPOSED ALGORITHM

For the purpose of this paper, the aforementioned prob-
lems can be summarized as follows:

(1) The algorithm is not robust to changes or
uncertainties in the obstacle grid, and cannot
deal with moving obstacles.

(2) The algorithm performs poorly in the presence
of walls, and in general obstacle proximity does
not translate to a higher obstacle density in Hp.

3.1 Obstacle decay rate

The first proposed change to the VFH+ algorithm is to
add a “decay” to cells around the active window, such that
occupancy values of all the cells inside the window plus an
additional number of surrounding “guard band” cells will
decrease over time. We define the following parameters:

• Decay rate (Rd): the frequency with which occu-
pancy values are decreased.
• Decay value (d): the amount to subtract from each

cell.
• Decay guard band (gb): additional cells to decay

around the active window.

The main control loop will then periodically call algo-
rithm 1 at the defined rate.

Algorithm 1 Decay algorithm

Require: d: decay value, gb: decay guard band.
Ensure: C: obstacle grid, Cs: obstacle grid size, ws: active

window size, wc: bws/2c, i0: robot’s X position in C,
j0: robot’s Y position in C.

1: procedure DecayActiveWindow(d, gb)
2: is ← max(i0 − (wc + gb), 0)
3: js ← max(j0 − (wc + gb), 0)
4: if ← min(is + ws + 2 · gb), Cs)
5: jf ← min(js + ws + 2 · gb), Cs)
6: for i← is, if do
7: for j ← ji, jf do
8: if C[i][j] ≥ d then
9: C[i][j]← C[i][j]− d

10: else
11: C[i][j]← 0
12: end if
13: end for
14: end for
15: end procedure

3.2 Magnitude equation

The second proposed change to the algorithm is the use of
a different equation to determine obstacle magnitude, in
order to improve on the poor performance of equation (1)
in cluttered environments.

While considering alternatives, we minded the following
important points:

• Distance should have a higher impact on vector
magnitude, a linear or quadratic proportion is not
enough.

• Cells with the maximum occupancy value in close
vicinity to the robot should have a blocking effect
on the polar histogram, even if it is just one or two
cells.

• The equation’s different parameters should affect in-
dependent aspects of the observed behaviour of the
robot.

After considering the former aspects, we came up with
equation (2). Let’s assume c2i,j = 1 in order to focus on
the exponential term, which is what really differentiates
this new function from equation (1). Figure 6 plots m(d)
for different E and B values, these will be the main
parameters to adjust the shape of the function.

mi,j = c2i,j · e
− 1

B ·
( di,j

D

)E

(2)

Notice how higher E values produce a more pronounced
slope. In practice, the E value should be increased if the
algorithm is not making enough distinction between close
and distant obstacles. On the other hand, higher B values
“spread” the slope along the x-axis. In practice, this would
be done to increase the minimum distance to obstacles that
determines a particular direction to be blocked.

Finally, parameterD is useful to “normalize” or change the
function’s scale on the x-axis and allow portability across
different robots or use cases, for example by setting D to
the robot’s radius rR. Other values that could be used are
the width of the active window, the LIDAR’s maximum
range or some other significant reference value. In fact,
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Fig. 3. Active window occupancy Fig. 4. Active window magnitude Fig. 5. Polar histogram
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Fig. 6. Effect of parameters B and E on equation (2).

parameter D is actually redundant, but we found it to be
very useful to simplify parameter tuning in practice.

Also, notice how m(d) stays within the range [0, 1[, re-
gardless of which values are selected. This also facilitates
the parameter tuning process. For example, we used B =
16.31, E = 3.2, and set D to rR. In Fig. 6, this would
closely resemble the dashed green line, with the x-axis
normalized to x times the Robot radius rR.

Now, we could say that any obstacle closer than 1.5 times
rR to the robot’s center will have almost the maximum
magnitude, while obstacles more than 3 times rR away
from the robot’s center will be negligible. Selecting the
threshold values τlow and τhigh is also easier. We can define
them solely in terms of c2max, e.g. set the thresholds around
4 · c2max to specify that there should more than 4 occupied
cells in one particular direction to block it.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the new algorithm
we used the obstacle configuration shown in Fig. 7. The
robot’s goal was set 3.5 m ahead of its starting position. We
measured the robot’s position using an OptiTrack motion
capture system. The tests were done on two different
Mecanum wheeled mobile robots, the robots’ dimensions
are summarized on table 1. For more information on the
robots used refer to Röhrig et al. (2010) and Maŕın (2018).

The parameters for VFH+D were selected using the afore-
mentioned guidelines. In this configuration, the gap be-
tween O1 and O2 is too small for Robot A to pass through,

Fig. 7. Obstacle course and robot B

Table 1. Dimensions of the robots tested

la lb r

Robot A 29.41 cm 21.03 cm 10.15 cm
Robot B 15.5 cm 12.5 cm 3 cm

Table 2. Success rate on reaching the goal

Algorithm Robot Trials Success Rate

VFH+
Robot A 10 30%
Robot B 10 100%

VFH+D
Robot A 10 100%
Robot B 10 100%

on the other hand O2 and O3 leave enough space for the
robot to pass. Robot B, being much smaller, easily fits
through both gaps.

Ten trials were conducted for each combination of robot
and algorithm as shown in table 2, with the same initial
conditions for all the tests. For the VFH+ algorithm with
Robot A, only 3 out of 10 trials managed to reach the
goal. Table 3 summarizes the results, excluding those trials
where the robot could not reach the goal. We measured the
Integral Absolute Error by defining the error ε(t) as the
robot’s Euclidean distance to the goal. Figures 8 and 9
show the path followed on one instance of each algorithm
for robot A. Figures 10 and 11 do the same for robot B.

Our results suggest that the proposed VFH+D algorithm
can have a higher success rate at traversing cluttered
indoor environments. We believe this is mainly due to the
improved mapping between obstacle distance and polar
obstacle density. This allows the robot to correctly ignore
obstacles that are too far away to impose restrictions on
its movement. This was particularly hard to accomplish
for VFH+, without considerably reducing the size of the
active window.
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Table 3. Algorithm performance comparison

Algorithm Robot
Distance traveled [m] Average speed [m/s] IAE [m·s]

min avg max stdev min avg max stdev min avg max stdev

VFH+ 1 A 4.71 5.32 5.84 0,57 0.128 0.213 0.262 0,074 33.12 41.24 48.17 7,59
VFH+D A 4.71 4.85 4.97 0,09 0.165 0.284 0.336 0,047 30.58 31.28 32.29 0,49
VFH+ B 3.84 3.86 3.89 0,02 0.094 0.217 0.253 0,047 28.89 30.00 36.25 2,28
VFH+D B 3.71 3.78 4.15 0,13 0.264 0.277 0.306 0,011 26.31 27.15 27.94 0,51
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Fig. 8. VFH+ algorithm,
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Fig. 9. VFH+D algorithm,
Robot A
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Fig. 10. VFH+ algorithm,
Robot B
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Fig. 11. VFH+D algo-
rithm, Robot B

As for the trials where VFH+ could not reach the goal, we
observed that the robot went for the opening between O2

and O3, but as it got closer that direction became blocked.
In turn the robot backed up, until the obstacles were far
away enough that once again the direction between O2 and
O3 was unblocked, and the cycle repeated. Effectively, the
robot was stuck in a “local minimum”. Once the robot has
failed in its first attempt to clear this opening, it’s very
unlikely that any further attempt will succeed, because
of the blurring effect explained in section 2 and Fig. 2.
We attributed the initial success or failure of the runs
to slight variations in quantization of the obstacles’ and
robot’s position to the discrete data structures of the grid.

VFH+D also achieved a higher average speed on both
robots. This may be expected, if the speed is calculated as
a function of the obstacle density in the robot’s direction
of movement (higher density means lower speed). Given
that the obstacle density for VFH+D is lower for far away
obstacles, the robot’s movement speed when traveling in
the direction of such obstacles will be higher. This is often
the case for indoor environments, where walls are present
in every direction and frequently fall within the active
window.

Additionally, VFH+ as defined in Ulrich and Borenstein
(1998) cannot deal with moving obstacles without becom-
ing trapped. The addition of decay to the active window
allows VFH+D to escape such situations.

Another aspect which is not immediately obvious from our
results is that VFH+D allows for better overall perfor-
mance with smaller data structures. For example, while

tuning VFH+ to allow it to somewhat successfully clear
the obstacle course, we found that Hp needs at least 160
sectors, while our parameterization of VFH+D required
only 100 sectors to successfully reach the goal on every
iteration. Intuitively, we interpret this as a better or more
efficient codification of the information necessary to cor-
rectly decide which path to follow.

5. CONCLUSIONS

This paper presents VFH+D, an improvement on VFH+
for local obstacle avoidance. The proposed changes are:

• The introduction of cell occupancy decay, which al-
lows for dynamic obstacle avoidance (algorithm 1).

• A new obstacle vector magnitude equation for cells in
the active window, as described by (2).

Also, it was shown that the parameter tuning for VFH+D
is more intuitive and requires less iterations.

To measure the new algorithm’s performance, a total of 40
trials with 2 different robots on one obstacle course with
static obstacles were conducted. The results show that the
new algorithm incurred in lower average distance traveled
to reach the goal and higher average speed, and achieved
consistently a lower IAE. For one of the robots tested,
VFH+ failed to reach the goal on 7 out of 10 trials, while
VFH+D reached the goal on every iteration.
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Maŕın, L. (2018). Modular open hardware omnidirectional
platform for mobile robot research. In 2018 IEEE
2nd Colombian Conference on Robotics and Automation
(CCRA), 1–6.
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Ng, J. and Bräunl, T. (2007). Performance comparison of
bug navigation algorithms. Journal of Intelligent and
Robotic Systems, 50(1), 73–84.

Pandey, A., Pandey, S., and Parhi, D. (2017). Mobile
robot navigation and obstacle avoidance techniques: A
review. International Robotics & Automation Journal,
2(3), 00022.

Patle, B., L, G.B., Pandey, A., Parhi, D., and Jagadeesh,
A. (2019). A review: On path planning strategies for
navigation of mobile robot. Defence Technology, 15(4),
582 – 606.

Roesmann, C., Feiten, W., Woesch, T., Hoffmann, F., and
Bertram, T. (2012). Trajectory modification consid-
ering dynamic constraints of autonomous robots. In
ROBOTIK 2012; 7th German Conference on Robotics.
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