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Abstract: We present a solution to deal with information package dropouts in distributed controllers
for large-scale networks. We do this by leveraging the System Level Synthesis approach, a control
framework particularly suitable for large-scale networks that addresses information exchange in a
very transparent manner. To this end, we propose two different schemes for controller synthesis and
implementation. The first one synthesizes a controller inherently robust to dropouts, which is later
implemented in an offline fashion. For the second approach, we synthesize a collection of controllers
offline and then switch between different controllers online depending on the current dropouts detected
in the system. The two approaches are illustrated and compared by means of a simulation example.
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1. INTRODUCTION

In distributed control methods, local controllers coordinate their
actions to deal with mutual interaction issues and improve
overall system performance. The information exchanged is
typically performed using a communication network, which is
a potential source of vulnerability due to well-known problems
as packet losses and cyber-aggressions. See for example (Lun
et al.,, 2019) for a comprehensive review of cyber-physical
systems security and (Sandberg et al., 2015), where attack and
defense strategies are shown for Network Control Systems.

Unreliable networks where packet dropouts can occur have
been explored in the past through many different control meth-
ods. For instance, in (Quevedo et al., 2015; Mishra et al.,
2018) the features of stochastic model predictive control are
exploited to buffer the input sequence and mitigate commu-
nication losses, and in Cetinkaya et al. (2015), where time-
inhomogeneous Markov chains are used to model random
packet losses in a control scheme where a feedback gain is used.

In this paper, we focus on a version of the linear quadratic reg-
ulator (LQG) problem that incorporates communication con-
straints as well as probabilistic communication dropouts be-
tween subcontrollers. To do this, we study this problem in the
context of the recently proposed System Level Synthesis (SLS)
framework (Anderson et al., 2019; Wang et al., 2017; Matni
et al., 2017), which allows for the synthesis and implementa-
tion of distributed and localized controllers in a scalable way,
making it a very suitable framework for large-scale networks.
In particular, the SLS framework explicitly accounts for the
information structure of the network, so the sub-controllers are
sparsely connected, i.e., each of the sub-controllers only ex-
changes information with other sub-controllers within its com-
munication range. Besides, it allows to localize the effects of the
disturbances within that range, which ultimately allows the sub-
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controllers to only access local information and solve for local
subproblems of much smaller complexity than the complexity
of the whole problem. Given this ability to localize, together
with the explicit dependence on the information structure, it is
important to analyze how an SLS approach can be affected by
packet losses, and also to propose means to relieve this issue.

In this context, our main contribution is an algorithm for syn-
thesis and implementation of SLS controllers that allows for
a time-varying communication topology to deal with packet
losses. To this end, two different approaches are proposed:

e Offline distributed controller synthesis and implementa-
tion of SLS controllers intrinsically robust to communica-
tion dropouts. This requires minimal online computations.

e Offline synthesis of SLS controllers together with an on-
line implementation strategy that adapts the controllers to
different communication topologies based on the sensed
package losses. In contrast to the first approach, this pro-
cedure requires more online computations, but comes with
increased control performance as it can adapt to changing
communication topologies.

Since SLS is a natural framework to perform distributed control
and the communication structure appears explicitly in the for-
mulation, the presented derivations are carried out by leverag-
ing the SLS framework. All the results are suitably distributed
among the sub-controllers of the network. Finally, a simulation
example is given to illustrate the proposed methods.

The remainder of this paper is organized as follows. In Section
2, we present the problem formulation. Section 3 introduces
the offline distributed synthesis and implementation strategies
using the robust SLS framework, and we provide a result for
the distribution of the robust SLS synthesis. Section 4 presents
an algorithm for offline distributed synthesis of SLS robust
controllers together with an online distributed implementation
that allows to tackle the communication dropouts. In Section 5,
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we illustrate the proposed approach via simulation. We end in
Section 6 with conclusion, and directions for future work.

Notation. Lower-case and upper-case Latin and Greek letters
such as = and A denote vectors and matrices respectively,
although lower-case letters might also be used for scalars or
functions (the distinction will be apparent from the context).
We use bracketed indices to denote the time of the true system,
i.e., the system is at state x(¢) at time ¢. Subscripts denote time
indices within a loop, i.e., x; denotes the tth state within the
loop. To denote subsystem variables, we use square bracket
notation, i.e. [x]; denotes the components of vector z that
correspond to subsystem ¢. Boldface lower and upper case
letters such as x and K denote finite horizon signals and lower
block triangular operators, respectively:

Zo K% 0

0,2 1,1
T K= | K7™ K>
1 ) b

where each K%/ is a matrix of compatible dimension. In this
notation, K is the matrix representation of the convolution
operation induced by a time varying controller K;(x.+), so that
uy = K¥'x, where K% represents the ¢-th block-row of K.

2. PROBLEM STATEMENT

Consider a discrete-time linear time invariant (LTT) dynamical
system with dynamics:

x(t+ 1) = Az(t) + Bu(t) + w(t), (1)
where z(t) € R"™ is the state, u(t) € RP is the control input, and
w(t) € R™is an exogenous disturbance, which we assume to be
additive-white Gaussian noise. The system is structured and can
be described as a collection of N interconnected subsystems,
with local state, control, and disturbance inputs given by [z];,
[u];, and [w]; for each subsystem 4. Accordingly if S is a
set of subsystems, we will understand [z]s, [u]s to be the
concatenation of [z];, [u]; for all ¢ € S. The matrices A and B
can also be partitioned into a compatible local block structure
[A];j, [Blij so the local dynamics for subsystem ¢ are:

)i (t+ 1) =Y [Alijlal; (6) + > [Blijlul; () + [wli(t).
J J

The interconnection topology of the system can be modeled as a

time-invariant unweighted directed graph G(F, V'), where each

subsystem ¢ is identified with a vertex v; € V and an edge

(vs,v;) € E exists whenever [A];; # 0 or [B];; # 0.

Inspired by control applications in the large-scale system set-
ting, we will assume that subcontroller [u]; is only able to
directly measure its own subsystem state [x];, but can receive
information with no delay from a small set of neighboring sub-
controllers V(i) € V through some kind of communication
network and can send information with no delay to a small
set of neighboring sub-controllers V°“(i) € V in the same
manner. To model this interaction more precisely, assume that
every controller ¢ has an internal state [p;]; and at every time-
step it performs the following two operations in order:

(1) compute message [m;]; based on history of internal state
and own measurement [x;);

[meli = [heli([2e]i, [pelis [Pe—1lis ), )

(2) exchange messages with neighbors and update internal
state:

[pe)i = [me]pin sy 3)

(3) compute control action based on own measurement [x];
and history of internal state [p;];:

[ut]i = [keli([2e]is [pelis [Pe—1lis ) )

In real applications communication networks rarely offer a
continuously reliable connection between subsystems. Thus,
we will assume that some communication links in the network
can occasionally drop packets. We model this by defining the
constraint that subsystem ¢ at time ¢ can receive information
only from the subset V;"(i) C V(i) and can only send
information to subset V7! (i) C V°"!(i). We define Dy (i) :=
Vout() /YUt (i) as the subset of systems which dropped pack-
ages from system ¢, and assume that for each ¢ there is a small
subset of neighbors V'™ (i) C V;j"(i) and V(i) C Vi (4)
that guarantee communication without dropouts.

If we consider dropouts, then the controller implementation
gets perturbed by replacing update step (3) with

[pe]i = [mt]vgn(i)v (3)

which simply states that the internal state update step does not
get all messages of its neighbors.

We will model the dropouts occurring for every subsystem ¢
as a random process, in particular we will assume V;" (i) to
be independent random variables over t, that are identically
distributed according to some probability mass function

£ 2V @@ (0, 1]. 5)

Remark 1. ?Vin(i)/zfn(i) means the power set of all possible
subsystems V(i) /V*" (i) that could drop communication to
subsystem 1.

Furthermore, assume the random sets V" (i) are also indepen-
dent for different :. We will refer to the joint-probability mass
function as f and we will abbreviate

V= {Vim(1),V"?2),... . V"(N)}
as the collection of subsets of {Vj" (i)} at time ¢.
With these definitions at hand, we can formulate our goals as to
minimize the expected average quadratic cost over the gaussian

disturbance w and the distribution of the dropouts occurring,
ie.,

min

T
.1
{he,ke} Eygrg fim o Z Elz] Qx; + uf Ruy]

=0 ©)
Tir1 = Az + Buy +w, VE=0,1, ..,

2),®), (3),

where E is the mathematical expectation and (Q, R) are posi-
tive definite cost matrices.

s.t.

In this work, we propose two ways to tackle this problem, both
formulated in the SLS framework since it provides a tractable
way to deal with the communication constraint (3). The first
strategy is to the tackle problem with an offline controller. To
do this, we will synthesize a controller offline inherently robust
to a specified set of communication dropout patterns. This will
penalize performance but will guarantee stability, as we will
show in section 4. We also present a different approach where
different controllers for different information exchange topolo-
gies are synthesized offline, which then are implemented by an
online controller that is senses dropouts and changes the com-
munication strategy while guaranteeing stability. Performance
of these two strategies is compared through simulation.
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3. PRELIMINARIES: SYSTEM LEVEL SYNTHESIS

In this section we present an abridged version of the SLS
framework (Anderson et al. (2019); Matni et al. (2017); Wang
(2017) and references therein). The SLS framework will be
used in the derivations presented in this paper due to its ability
to impose locality constraints, as well as its ability to distribute
both controller synthesis and implementation. Recent work
has extended the SLS approach to the time-varying system
(Anderson et al. (2019); Ho and Doyle (2019)) and even general
nonlinear systems (Ho (2020)).

3.1 Time domain System Level Synthesis

Consider the system with dynamics (1). Let u; be a causal time-
varying state-feedback control law, i.e., uy = K;(xg, 21, ..., ¢)
where K is some linear map. We will denote K the general
bounded causal linear operator mapping state sequences x to
input sequences u = Kx. Although rather informal, for ease
of exposition we will think of linear bounded operators as
infinite dimensional lower triangular matrices. To this end,
define A := blkdiag(4, 4,...), B := blkdiag(B, B,...)
as infinite dimensional block-diagonal matrices with A and B
on the diagonal and let Z be the block-downshift operator * .
Using this notation, the dynamics (1) impose the following
relationship between the state x, input u and disturbance w:

x=Z(A+BK)x+w.

Overall, the closed loop behavior of the system in (1) under the
feedback law K can be entirely characterized by

x=(I—-Z(A+BK)) 'w=&,w (7a)
u=K(I - Z(A+BK)) 'w: ®,w, (7b)
where the operators ®, and ®, are the closed loop maps

from the disturbance w to the state x and control input u,
respectively.

The SLS framework relies of this parametrization for the opti-
mal controller synthesis to be performed by directly optimizing
over the system responses ®, and ®,,, as opposed to the con-
troller map K itself.

Theorem 3.1. For the dynamics (1) state feedback law K
defining the control action as u = Kx, the following are true

(1) the affine subspace defined by

[I-ZA ZB]{:%”]I ®)
parameterizes all possible system responses.

(2) for any transfer matrices {®,,®,} satisfying (8), the
controller K = ®,® 1 achieves the desired response.

Hence, by using the SLS framework optimal control problems
can be reformulated into convex optimization problems. A de-
tailed description on how to do this is provided in (Anderson
et al., 2019). One of the main advantages of formulating an op-
timal control problem with the system response parametrization
is that it allows to impose (2), (3) and (4) in a convex manner
by imposing the system responses to be localized. As shown
in (Anderson et al., 2019), communication constraints on con-
trollers of the form K = ®,®, ! can be easily incorporated
into optimal control problems, by requiring that the closed loop
maps {®,, P, } lie in a suitably chosen subspace S. Overall,
many traditionally non-convex optimal control problems can

1 A matrix with identity matrices along its first block sub-diagonal and zeros
elsewhere.

be recast into their equivalent convex SLS representation of the

form
min  g(®,, P,)
P
I-ZA —ZB T =7 9
S.t. [ } |:(§u:|
{®,,®,} €S,

where the optimization is phrased over the feasible closed loop
maps {®,,®,}. Moreover, S can incorporate other convex
constraints imposed on the system responses, i.e., finite impulse
response (FIR), performance bounds, etc.

3.2 Virtually localizable System Level Synthesis

In the previous subsection the SLS framework was presented.
Oftentimes the constraint {®,,®,} € S can be too restric-
tive to impose on the closed loop maps, while it is only used
for certifying that certain communication constraints on the
controller K = ®,®_ ! are enforced. A robust-variant of the
SLS parametrization described above was introduced by Matni
et al. (2017), and later generalized in (Ho and Doyle, 2019) for
the general setting of time-varying systems, which addresses
this issue. The following general approach can be found in
Anderson et al. (2019) and is based on the following result:

Theorem 3.2. Let (<i>gg7 &, A) be a solution to
&,

[[—-ZA — ZB] [@ }:(IJFA).

u

Then, the controller implementation

u=®,w, x=(I-®,)w, w=x-%, (10
internally stabilizes the system (1) if and only if (I + A)™1 is
stable. Furthermore, the actual system responses achieved are

given by: y
X | _ (I’l -1
M _ [@} (I +A) " w.

This theorem allows for a reformulation of problem (9), which
allows to search over controller implementations K = i’uégl
where ® ., ®,, do not have to be necessarily closed loop maps.
As stated in (Anderson et al., 2019), a sufficient condition
for (I — A)~! to be stable is that any of the induced norms
Al I[Allz, 5 [|A]l,, are smaller than < 1. In particular,
the optimal control problem (9) can be relaxed to:

Y

 min g<[‘?l} (1+a)Y
&,.8,,A P,

I—ZA —ZB] P’m] —1+A (12
S.t. (I)“

{@.@.} eLaus, |ial. <1,

where * in |||, is one of Ho, L1, €1.

4. CONTROLLER STRUCTURE AND DISTRIBUTED
SYNTHESIS

Here we introduce the reformulation of problem (6) into the
SLS framework, and illustrate the controller structure and its
implementation and the communication model. This will pro-
vide us with a set of tools that will be useful in the next sections.
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In what follows, we use the notation ®%*, ®%:* and [@i;k] ,

]
®H%|  to index sub-matrices of ®, and ®,,
%t 0 0
02 ot 0 L.
@, = |ghs gl2 p21 (13)
0], [0, . [0t],,
oLk [(1)95.]21 (25 ]272 (2 ]2,71 (14)
[q)i’,k]n,l [q)i’,k]n,Q [(D?k]nn

and the same convention is understood for ®,, and A. Notice
that we are abusing notation, and although we are referring
to the system responses in (11), we will drop the tilde for
convenience. Also, we will use the abbreviation for the columns

05 = [@57],, [0 =[], (5

With this notation, we can write the controller implementation
(10) into its distributed form:

t+1
[ =D > (@R i epi—gli - (162)
i k=2
t+1
[uely =D > [@LF] T i (16b)
i k=1

The above controller implementation can be put in the form of
the communication model described in (2), with the following
correspondence (3) in the SLS notation:

[mes = {[)i[e]s, [D0)ilwe]i}

[pels = {2 [, [0L]5[0e] 3750 -
Remark 2. The above communication scheme expresses that
every subsystem i decides on the columns [¢L];, [¢L]; and it

shares it with all other subsystems and it can be verified that
this is consistent with the original controller equations (16).

Recalling our original problem (6), notice that we can equiva-
lently formulate the dropout constraint

[pe)i = [mt]v;n(i)
as the following sparsity constraint on [¢%]; and [¢! ],

[¢2]ilpout iy = 0 & (@51 = [[d3)ilveue iy (17a)

[¢t)idpgut iy = 0 & [@L)i = [[Dh)ilvewr iy (17b)
where [[¢}];]s stands for

[[¢tx]2] [ ]s,w [[¢Z]z]$ = [@2:}3,1'

With this in mind, together with equation (11), we can reformu-
late optimization (6) into a robust SLS problem ? as:

: ) ®£ -1
Qi Evey QRIS (14 4) .
T ¢1
Zis | g2 ] = A 1Al <1, (13)
S.t.
[02)i = [[9z)ilveut iy, [@h)i = [[Drlilvoue i)
Vi=0,1,...

2 Notice that, as shown in Wang et al. (2014), the localized LQR cost in (6) in
the presence of additive-white Gaussian noise can be reformulated into the H2
norm of the weighted transfer matrices ®, and ®,,

where 2%, = [27 — A, —B], Q := blkdiag(Q?,Q%,...),
R := blkdiag(R2, R?,...), and * in |||, is one of Hoo, L1,
e1. Notice that the last constraint is using the notation V! (i),
which accounts for the presence of dropouts for each k < ¢ Vt.

4.1 Relaxation of Ho Optimal Robust controller synthesis

Equation (18) presents a reformulation of the original problem
(6) into one featuring the SLS formulation. This reformulation
will allow to make this problem tractable given the transparency
with which communication structure constraints can be im-
posed in SLS. However, one of the major limitations of (18)
is that the objective function is non-convex in A. Not only that,
but it is not obvious how to perform the computation distribut-
edly among subcontrollers. In what follows we present a way
to solve a relaxation of (18) by means of a quasi-distributed
convex optimization. In the following derivation we choose
the £4 norm as the robustness criterion for ||-||, and give an
appropriate bound on the H2 norm.

We start by recalling a result on Neumann series of bounded
linear operators from Lemma A.1 (Appendix A). It can be
leveraged to obtain the following H inequality for linear time-
invariant operators in terms of the ||.||2«1-norm as in (4.1).

Lemma 4.1. Let ® be a time-invariant linear operator with

[@t’k} y and [¢?); referring to the decompositions in (13), (14),
(15). If || @], < 00, then
[@ll2-1 := sup [[®w], = max ¢l E (19
[lwl1<1
Proof. See Appendix A. O

Lemma 4.2. Assume G, A are linear time-invariant operators
of dimension n with | Allz, < A < 1and |G|y, < co. Then
the following bound holds:

|G(T - i

A)AHH? < ||G||2<—1ﬁ-

S GAF,

k=0
= AoAo---0A. First consider the H5 norm of
| ——
k

the terms GA*. We can write || GA*(|3,

Proof. Using Lemma A.1 we have G(I — A)~! =

where AF

=X [Gakst|3
i=1

where s is the sequence where s\ = ¢; 3 and s{” = 0 for

all k > 0. Since, [|s®]|; = 1and |[AF||z, < [[A[% < AF, we

have ||AFs(®||; < AF. This gives us the bound:

n
IGA |3, < GA sy < n|Gllacr AF
i=1
and leads to the desired result:

| ];)GAkﬂm < ];)”HGHw—l/\k < ||G'||2<—11

n
-\
O

Lemma 4.2 gives an upper bound on the objective function of
problem (18). Hence, problem (18) can now be written as:

3 ith

e; is the unit vector in the 7*" entry.
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. b, n
N SRt bl
P,
ZZ;B [q;u} =A, ”AH£1 <A, (20)
S.t.
[0%]i = [[8L)ilveut iy [0 = [[Lilyoue iy
Vi=0,1,...

Problem (20) is a quasi-convex problem. Moreover, the L;-
norm constraint can be decomposed in a convenient manner
that facilitates distributed computation. In fact, applying our
notational convention (13)-(15), on A, we get the relation
t
7T [¢z]1:| —[st i
2551 |[97)] = 0

u

2

where [A"] . := [§'];. Moreover, it can be verified that the
term ||A||z, can be equivalently written as

1AL, = max||[5:]]x, (22)

which allows to write the robustness constraint (20) as
ma |[8%: 1 < A

Recalling, that the ||.||2..1 norm also decomposes w.r.t. [¢L];
and [¢Z]i, we can combine equation (19),(21) and optimization
(20), to compute a relaxation of the robust optimal control
problem (18) that decomposes. Furthermore, this allows for
distributed computation, except for a global optimization over
A and ¢, which can be solved via bisection in a distributed way
through a consensus algorithm. In summary, every subsystem ¢
will solve the following optimization:

min c
[(btz]iv[qbi]iv)ﬁc

s.t. <A,

1
[95)i = [[8e)ilveueiys (8 =
Vi=0,1,...

[[9%)ilvout iy

(23)

where, [Q]; and [R]; are the corresponding local blocks of
subsystem ¢ for Z 45, Q and R respectively.

4.2 Stability guarantees for a time-varying implementation

It is important to note that the controller synthesis problem
(23) corresponds to a LTI controller. However, the actual closed
loop is time-varying due to the time-varying communication
dropouts that can occur in the network. In the following lemma
we show that column-wise switches* between any number of
L robust controllers do not render the closed-loop unstable.

<1,

{2, 03} YM | where each {33,v3} are partial system re-
Il

sponses that satisfy
’ (]

then the closed loop system is stable.

Lemma 4.3. Consider the controller (16), where {[¢%);, [¢%]:} C
2551 |4

4 A column-wise switch means that we can change one or more columns of
the transfer matrices ®, and ®,,.

Proof. This result follows directly from the relationship (22).
Recall that A can be written as

AL, = max 5],
but since {[6L];. [61]:} € ({5, 45}}2,. we have
25, [W%]

)

[¢z]

which proves stability per small gain theorem.

<1,
1

1A ]Le, = mas [[6): 1 = max

O

Notice that this lemma is only valid under the assumption that
we have £ robustness, i.e. ||A|lz, < 1, and given that the
combinations are done column-wise. If this were not the case,
an argument similar to the ones presented in (Ho and Doyle,
2019) would need to be made.

5. OFFLINE ROBUSTNESS TO DROPOUTS

In this section, we introduce a strategy to make the controller
robust to communication dropouts. We take advantage of the
formulation (23) and Lemma 4.3 and we propose an offline
controller synthesis that accounts for communication dropouts,
making the resulting controller intrinsically robust to communi-
cation dropouts. Since robustness is guaranteed by the synthesis
process, we can implement this controller offline. The resulting
controller is a very low-cost controller robust to package losses.

5.1 Offline controller synthesis

Let us start by considering that the general problem (18) with
time invariant ®, and ®,. We need to guarantee that the
resulting control will be robust to all the dropouts suffered by
the communication network. To do that, we need to consider
all the different sparsity patterns induced by all the possible
dropouts, and guarantee satisfaction of the constraints for all
of them. According to the definition, ’Df“t is associated with
a given dropout at a certain time ¢. From equations (17), we
have that each D¢“* induces a sparsity pattern in @, and ®,,.
We can characterize all the dropouts scenarios generated by
the probability mass function f, under which the controller is
required to be robust as the set of sets Z, so D%t € 9 for each
of the dropouts. Then, (18) can be written as:

g 25O o 2] o ar )
st |[%m Hiﬁﬂ , <Lvse2, @4)

Hq)z]i]v/f;out = 0, [[@u}i]v/fjout - 0

Notice that the tractability of (24) depends on the size of 2 and
V" and V°**. Even thought this can lead to a combinatorial
explosion, since the problem can be solved in a distributed
manner via equation (23) and the size of V™ and V°** is much
smaller than the size of the network in structured systems, this
represents a feasible approach in practice.

5.2 Offline controller implementation

The controller implementation is distributed and can be de-
scribed by equations (16), where the maps ¢, and @, are
obtained from the distributed synthesis (23) with the additional
robustness constraints as discussed in the previous subsection.

Notice that although the controller was restricted to be LTI, the
implementation of such a controller will be time varying due
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to the time varying nature of the dropouts. This controller is
however guaranteed to be stable by virtue of Lemma 4.3.

6. ONLINE ROBUSTNESS TO DROPOUTS

Here we introduce a different strategy to make the controller
robust to communication dropouts. Once again, we take advan-
tage of the formulation (23) and Lemma 4.3 and we propose an
online controller synthesis that is able to sense communication
dropouts instantaneously. In this design performance is not hurt
by the robustness, at the expense that the controller needs an
online implementation and is therefore time-varying.

6.1 Online controller synthesis

We start by considering the general problem (18) were the
controller is allowed to be time varying. The goal is for the con-
troller to perform the optimal action given the current dropout.
In order to do so, it is important to recall that the controller is
able to sense instantaneously the dropout experienced. This is
a reasonable assumption assuming a handshake protocol is in
place and communication occurs at a local scale. Hence, the
optimal strategy would be to use the optimal ¢, and ®,, for
each dropout when it occurs, therefore switching between op-
timal controllers based on the dropout experienced. Under this
premise, the synthesis reduces to solving offline optimization
(18) for all dropout cases, which can be rewritten as:

QR || (e Ay

q,S

u

min
o

s.t. <1,

Ly

for each dropout pattern S € 2. The number of optimizations
to solve depends on the size of 2 and the different sparsity
patterns that they generate in ®, and ®,,. Notice that problem
(25) can be solved offline in a distributed manner via (23).

6.2 Online controller implementation

Once the controllers have been synthesized offline, the on-
line implementation easily follows. If at every time ¢ dropout
Dut(4) is sensed, subsystem i implements the [¢.7!]; and
[¢!F1]; that were synthesized according to the sparsity pattern
induced by D¢t (i). The corresponding [¢4F1]; and [¢!F1]; are
implemented according to (16). This repeats for each ¢.

7. SIMULATION EXPERIMENTS

In this section, we present simulation experiments of the two
strategies introduced in this paper to deal with dropouts and we
compare their performance for different dropout scenarios. To
perform these experiments we choose the following dynamical
system consisting of 10 nodes:

i+2
st +1) = 1.2 Y aylal; () + 1.2[uli(t),
j=i—2
where «;; = 4 for j = ¢ £ 1 and o;; = .2 otherwise.
For i = 1,10 «; = .6. Negative j are not considered. The
communication is described by the following adjacency matrix:
110 0 0 ¢
111 0 0
G=101110 ;

and we consider d to be the dropout parameter. If no dropouts
are present d = 5. A dropout changes the value of d, so

d € D = {2,3,4,5}. The probability distribution of d over D
is uniform. We define one [d]; € D for each subsystem ¢, which

represents the sparsity induced in the i*” column of (G')[%].

The cost at each time is computed as C(t) = xz(t)Tx(t) +
u(t)Tu(t), and the total cost for each simulation is computed

as C = ZtT:O C(t) for T = 100. The simulations are run
comparing the two strategies — offline and online — subject
to the same random noise and the same dropout scenario.
An illustrative example of the state, input and communication
topology is introduced in Figure 1.

Offline scheme Online scheme

2
2
<
= 0 X o
2 -2
0 10 20 30 40 50 0 10 20 30 40 50
Time Time
1
1
< <
30 S
-1 -1 1
0 10 20 30 40 50 0 10 20 30 40 50
Time Time
10 - - - - 10
£ =
s £ =
0 10 20 30 40 0 10 20 30 40
Time Time

Fig. 1. On the left: state, input and communication topology
for subsystem 4 using the offline strategy. On the right:
identical representation for the online scheme.

Further, we compare the moving average defined as M =
% 23:1 E[C(t)], where E[C(t)] is by averaging the cost under
10 different Gaussian noise processes. We do so for different
dropout scenarios. As illustrated by Figure 2, the online strategy
performs better than the offline one. However, the gap is not
dramatic, so the offline strategy is more cost efficient since it
does not require an online implementation. Simulations sug-
gest that both of these strategies are robust to communication
dropouts while providing good performance, and the choice of
using one versus the other is context dependent.

8. CONCLUSION

We presented two different strategies to deal with information
packages dropouts in the communication network of distributed
controllers by leveraging the SLS framework. The first strategy
consists of an offline synthesis of a SLS controller constrained
such that the resulting controller is inherently robust to com-
munication dropouts. This controller can then be implemented
in an offline fashion with the guarantee that it will be robust
touts. The second strategy consists of a synthesis of a collection
of SLS controllers, each of them being optimal for a certain
sparsity pattern. The implementation of the controller is carried
out online, and each agent is able to choose a realization at
each time step from the collection of synthesized controllers
based on the current communication topology originated by
the dropouts, which it can sense instantaneously. Notice that,
although the controllers are synthesized as LTI, the controller
implemented are time varying due to the time-varying nature
of the communication network. We show in Lemma 4.3 that
the controllers implemented are internally stabilizing. We also
provide a relaxation to the robust version of SLS that allows for
a distributed computation.
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Fig. 2. On the left: moving average LQR cost computed over 10
disturbance processes for three different dropout scenarios
for the offline scheme. On the right: identical representa-
tion for the online scheme.

This work represents a first step into the use of SLS as a
tool to tackle communication problems in a networked control
setting. Here we only discuss the extensions for the linear time-
varying case, but remark that it is an interesting open problem
whether the presented techniques can be extended to a even a
broader setting, using the SLS approach for nonlinear systems
introduced in (Ho (2020)). As for future work, it remains an
open question how to tackle communication dropouts in the
case where delay is present. Furthermore, we plan to exploit
the connections with distributed and localized model predictive
control (Amo Alonso and Matni, 2019), since communication
in this scheme is key and drop of packages is likely in real-
life applications. Another application could be the coalitional
control framework (Fele et al., 2018), where cooperating local
controllers are clustered in disjoint groups with intermittent
communication to promote a trade-off between closed-loop
performance and coordination overheads.

Appendix A. SUPPLEMENTARY PROOFS

Lemma A.1. Let A be a linear bounded operator on L1 and
assume ||A|z, < 1, then (I — A)~1 exists, can be written
equivalently as

I-A)!= iM
k=0

and is bounded by ||[(I — A)7 s, < L5 where AF =
AoAo---0A,
—_—

k

Proof of Lemma Lemma 4.1

Proof. Decompose w into
n o0
Z it
S( )wi,ta

1t=0

W =

7

i . . it i b
where s(i*) are dirac sequences, i.e. s.;” = 1 and sglk) =0

for all other times &k and vector entries j. Now, due to linearity
and triangle inequality we have

n [ee] n o0
1Bwly =11 > s wiglla <> (188D |2fwil,
i=1 ¢t=0 i=1 t=0
where we dropped the ¢ super-index due to time-invariance of
G. It follows the inequality

[@wll, < ma /(60013 D0 Jw

i=1 t=0
<@l llwla-

The result follows, because the left-hand bound can always be
achieved with an appropriately chosen dirac sequence w. [

REFERENCES

Amo Alonso, C. and Matni, N. (2019). Distributed and Local-
ized Model Predictive Control via System Level Synthesis.
arXiv:1909.10074 [cs, eess, math]. ArXiv: 1909.10074.

Anderson, J., Doyle, J.C., Low, S., and Matni, N. (2019). Sys-
tem Level Synthesis. arXiv:1904.01634 [cs, math]. ArXiv:
1904.01634.

Cetinkaya, A., Ishii, H., and Hayakawa, T. (2015). Event-
triggered control over unreliable networks subject to jam-
ming attacks. In Proc. 54th IEEE Conference on Decision
and Control (CDC), 4818—4823.

Fele, F., Debada, E., Maestre, J.M., and Camacho, E.F. (2018).
Coalitional Control for Self-Organizing Agents. IEEE Trans-
actions on Automatic Control, 63(9), 2883-2897. doi:10.
1109/TAC.2018.2792301.

Ho, D. and Doyle, J.C. (2019). Scalable robust adaptive control
from the system level perspective. In 2019 American Control
Conference (ACC), 3683-3688.

Ho, D. (2020). A system level approach to discrete-time
nonlinear systems. arXiv preprint arXiv:2004.08004.

Lun, Y.Z., D’Innocenzo, A., Smarra, F., Malavolta, 1., and
Di Benedetto, M.D. (2019). State of the art of cyber-physical
systems security: An automatic control perspective. Journal
of Systems and Software, 149, 174-216.

Matni, N., Wang, Y.S., and Anderson, J. (2017). Scalable
system level synthesis for virtually localizable systems. In
2017 IEEE 56th Annual Conference on Decision and Control
(CDC), 3473-3480. IEEE, Melbourne, Australia. doi:10.
1109/CDC.2017.8264168.

Mishra, PK., Chatterjee, D., and Quevedo, D.E. (2018). Stabi-
lizing stochastic predictive control under Bernoulli dropouts.
IEEE Transactions on Automatic Control, 63(6), 1579-1590.

Quevedo, D.E., Mishra, PK., Findeisen, R., and Chatterjee, D.
(2015). A stochastic model predictive controller for sys-
tems with unreliable communications. IFAC-PapersOnLine,
48(23), 57-64.

Sandberg, H., Amin, S., and Johansson, K.H. (2015). Cyber-
physical security in networked control systems: An introduc-
tion to the issue. IEEE Control Systems Magazine, 35(1),
20-23.

Wang, Y.S. (2017). A System Level Approach to Optimal Con-
troller Design for Large-Scale Distributed Systems. Ph.D.
thesis, California Institute of Technology.

Wang, Y.S., Matni, N., and Doyle, J.C. (2014). Localized LQR
optimal control. In 53rd IEEE Conference on Decision and
Control, 1661-1668. IEEE, Los Angeles, CA, USA. doi:
10.1109/CDC.2014.7039638.

Wang, Y.S., Matni, N., and Doyle, J.C. (2017). Separable and
Localized System Level Synthesis for Large-Scale Systems.
arXiv:1701.05880 [cs, math]. ArXiv: 1701.05880.

3140



