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Abstract:
The main goal of this paper is to present a new method for fault detection and isolation with
a Bayesian network (BN). This method combines model-based and data-driven frameworks to
detect and diagnose single, multiple and unknown faults. We propose an original BN structure
with new decision rules. These rules are constructed to take advantage of the prior model
knowledge and the available data. Our network presents new perspective to detect unknown fault
and outperforms some recent work proposed in Bayesian networks literature. The performance
of the method is illustrated on a heating water process simulating several scenarios of operating
conditions.
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1. INTRODUCTION

Complex processes are very hard to manage and moni-
tor due to the different interactions and interconnections
between their components. Therefore, industries and busi-
nesses increased their interest on the use of fault detection
and diagnosis techniques in order to increase processes’
productivity and sustainability. Fault detection attempts
to determine whether the process is in normal or faulty
operating conditions. Fault diagnosis identifies the fault
that has occurred in the process.
Two worlds of thinking exist to detect and diagnose faults:
model-based and data-driven. Model-based methods are
based on an analytical model of the process while data-
driven methods are made of statistical models using the
available process data. Model-based methods compare the
observed behaviour and values of their variables to the
model output. The resulting inconsistencies are called
residuals. Theses residuals are sensitive to noise, model
uncertainties, and faults. Statistical tests are commonly
used to monitor these inconsistencies. Data-driven meth-
ods approach the fault diagnosis problem as a discrimi-
nation/classification problem. Here models are built from
data representing the process in different operating condi-
tions. These models are called classifiers. These classifiers
are rigorously trained to learn the process’s behaviour and
decide about the belonging of a new observation.
Both worlds have advantages and disadvantages. In fact,
the effectiveness of data-driven methods consists of having
good quality and reliable data, which can be challenging
to obtain in a complex system. Besides it is difficult to
identify all faulty data. It is clear that these methods
are highly dependent on the quality and quantity of data
available on the process.

? This work was not supported by any organization

Model-based methods unlike data-driven methods require
normal operating conditions training set to decide about
the process’s behaviour. Model-based methods are pre-
ferred to data-driven methods due to their reliability to
describe the dynamic of the process with a physical un-
derstanding. However, this physical foundations can be
a burden to these methods when the system is complex.
An accurate analytical model without uncertainties can
be hard to obtain, particularly for processes with a huge
number of complex interactions.
Therefore, many papers suggested that the creation of a
framework combining the two classes of methods would
allow an improvement of fault detection and diagnosis
approaches Atoui et al. (2015); Ding et al. (2009); Venkata-
subramanian et al. (2003). However, in the literature, the
majority of contributions is focused on the development
or improvement of one of the two classes of methods.
Hybrid diagnosis systems have been proposed and dis-
cussed in Jung et al. (2018); Tidriri et al. (2018); Atoui
et al. (2015); Atoui (2015). In this paper, we propose a
new FDD method based on Bayesian networks. Our study
shows that physical insights integrated with a data-driven
BN classifier improve significantly decision making. This
method also handles explicitly multiple faults.
The paper is structured as follows: section 2 introduces the
concepts; In the third section we describe the proposed
FD method; Section 4 is an evaluation of the proposed
method on a simulated process water heater. Conclusions
and perspectives are outlined in the final section.

2. METHODS AND TOOLS

2.1 Bayesian networks

A Bayesian Network (BN) (Nielsen and Jensen, 2009) is a
probabilistic graphical model. It consists of the following
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• a directed acyclic graph G, G=(V,E), where V is the
set of nodes of G (nodes), and E is the set of arcs of
G,

• a finite probabilistic space (Ω,Z, p), with Ω a non-
empty space, Z a collection of the subspaces of Ω and,
p a probability measure on Z with p(Ω) = 1,

• a set of random variables x = x1, . . . ,xm associ-
ated with the nodes of the graph G and defined on
(Ω,Z, p), such that

p(x1,x2, . . . ,xm) =
m∏
i=1

p(xi|Pa(xi)) (1)

where Pa(xi) is the set of the parent nodes of xi in
G,

• a conditional probability table (CPT) associate to
each node, given its parents, describing probabilistic
dependencies between variables,

• calculations named inference, performed in respect of
the new evidence about one or several nodes of G, to
update the network.

BNs are powerful probabilistic tools. They have shown
great abilities to detect and diagnose faults in processes
(Atoui et al., 2019; Atoui. et al., 2019; Cai et al., 2017). B

2.2 Matrix of signatures

A prior knowledge about a process can be described by
a set of mathematical equations explaining its dynamic
and the relations between its variables. This set of math-
ematical equations is the foundation of the model-based
methods to generate residuals, residual generator. The
residuals are the differences between the observed vari-
ables and their estimates when the process is on the kth
operating conditions. It’s common to consider estimates
of the normal operating conditions, NoC. The evaluation
of these residuals determines the operating state of the
process.
Residuals r1, . . . , ri corresponding to the normal operating
conditions are usually considered statistically equal to zero
as they might be sensitive to errors, noise, and modeling
errors. Statistical tests are then used to compare the resid-
uals to their corresponding thresholds. The process is un-
der normal operating conditions if none of the residuals is
out of their limits. Obviously, residuals are also sensitive to
the presence of faulty operating conditions. To identify the
present of faults one can isolate them based on structured
residuals. These residuals are built in a way that they are
sensitive to certain faults and not to others. The isolation
in this case consists in comparing the symptoms and the
characteristics of each fault. These characteristics can be
assembled into a Signature Matrix (SM), see Table 1 re-
flecting the sensitivity or robustness of the residuals. This
signature matrix is obtained during a learning stage using
heuristics and/or analytical knowledge of the process.

NoC F1 · · · FK

r1 0 l1·1 . . . l1·K
. . . 0 . . . . . . . . .
rm 0 lm·1 . . . lm·K

Table 1. signature matrix

In the signature matrix, each column corresponds to
the characteristics of each fault, Γk, and isolate it to

differentiate it from the other faults. It represents the
relationship, li·j , li·j ∈ 0, 1 between each fault and the
residuals. In the following li·j = 0 refers to the residual
i that is not sensitive to fault j.

2.3 Relationships between BN and SM

Previous studies have proposed various BN structures
for fault diagnosis. A discrete BN discriminating between
faults in respect of new symptoms (result of the residuals
evaluation) and including components reliability was pro-
posed in (Zaidi et al., 2012; Weber et al., 2008). Similarly,
based on the signautre matrix, many authors proposed to
directly analyze the residuals within a Bayesian network
(Atoui et al., 2016; Zhao et al., 2013; Gonzalez et al., 2012;
Schwall and Gerdes, 2002). In (Pernest̊al et al., 2006), the
authors proposed a method to learn the relations between
residuals and faults directly form data, where several BN
structures have been evaluated and compared using the
Diesel engine data. (Kawahara et al., 2005), as well, pro-
posed to use data and physical and expert knowledge to
diagnose faults in a spacecraft.
Most of these BNs rely on a discrete Bayesian network
with a structure deduced from the links residuals-faults
provided by the signature matrix. They also provide de-
cisions about the process behaviour without respecting
a false alarm rate. None of these networks consider the
possibility of emergence of new observations belonging to
unknown operating conditions.

3. THE METHODOLOGY

3.1 Bayesian network scheme

Fault diagnosis can be seen as a classification problem.
Data-driven classifiers assign a new faulty observation to
one of the known classes. They try to define boundaries
based on training data and to accurately distinguish be-
tween the process operating conditions using new data. It
is then obvious that the decisions made depend tremen-
dously on the available data. If this data is not repre-
sentative and reliable then it would lead to inaccurate
classification.
Faults can be also isolated based on the process’s analyt-
ical model. This model describes the analytical relations
between process’s variables. Based on these relationships,
different approaches are possible to generate residuals to
be evaluated. A straight forward and efficient approach
is the structured residuals (Ding, 2008). Such approach is
achieved without the use of fault data operating condi-
tions. Here the signature matrix is built such as residuals
are, simultaneously or not, sensitive to different subset of
faults. Basically, faults are decoupled in a set of tests such
as residuals are sensitive to a specific subset of faults, and
to any fault is only characterised by a specific subset of
residuals. Fault diagnosis here depends a lot on the decou-
pling of faults. Indeed, structured residuals are designed to
well isolate the process’s faults, both single and multiple.
But, it’s difficult to identify and decouple all of them when
the process’s analytical model is complex, not accurate or
not completely available.
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On the other hand, data-driven classifiers are very useful
when faulty operating conditions data are available but
struggle to identify multiple and unknown faults when
there is not such relevant data categorized, simulated or
known. Therefore, it can be interesting to boost classifiers
by the concept of structured residuals to enhance decision
making and handle single, multiple and unknown faults.
In the following, we propose a hybrid Bayesian network-
based scheme for fault detection and diagnosis. Among
efficient data-driven classifiers is the conditional Gaus-
sian classifier (CGN), which is a special configuration
of Bayesian networks. CGNs efficiently models the rela-
tionships between process variables and could be natu-
rally used to solve classification problems. The proposed
network is the one shown in Figure 1. More advanced
structures and network can be also considered.
Let a new observation vector r of r, r ∈ Rm and K + 1
different classes Cj , Cj ∈ {NoC, Fk}, k ∈ {1, . . . ,K}. The
network shown in Figure 1 could assigns r to the class Cj
with the highest a posterior probability p(D = Cj |r), D
is a discrete variable. The Maximum A Posterior (MAP)
rule, δ, can be written as follows

δ : r ∈ Cj∗ ,where j∗ = argmax
j=1,...,K

p(Cj)p(r|Cj)
p(r) (2)

where p(Cj) represents the a prior probability of the
class Cj , p(r) is the normalization factor, which does not
affect the decision, and p(r|Cj) is the multivariate normal
probability density function of r given Cj , with µj and Σj ,
respectively, the mean vector and the covariance matrix of
the class Cj .
Based on the MAP rule, the network is then only decid-
ing and discriminating between known and single faults.
Therefore, we suggest to enhance this rule and bring to it
an analytical insight.

3.2 Probabilistic limits

The MAP rule do not treat multiple and unknown faults.
It also do not respect a false alarm rate. For that, we
propose to isolate each class statistically and consolidate
the boundaries obtained by the classifier.
Our proposal is based on the Hotelling T-squared statistic
associated to each class Ck. This distance is widely used for
fault detection. It’s first calculated and then compared to
their predefined threshold (control limit CL) in respect to
a given false alarm rate α. We refer to it by multivariate
T2. It can be deduced from our proposed network. It’s
written, in respect to Cj , as below

(r − µj)TΣ−1
j (r − µj) (3)

and follows approximately the distribution given by
a(N2 − 1)
N(N − a)Fα(a,N − a) (4)

where Fα is the 1 − α quantile of a Fisher distribution,
which is the control limit, denoted by CLT2 .
Based on equation (3) and the derivation provided in
the appendix A, we developed a probabilistic limit PLj
adapted to our network and matching the control limit in
(4). The probabilistic limit PLj with respect of Cj is given
by

PLCj =

p(Cj)
|Σk|

1
2
e−

1
2CLCj∑K/{k}

p
p(p)
|Σp|

1
2
e−

1
2T

2
p

(5)

with K/{k} means all the K + 1 classes except the class
k.
Furthermore, in this paper, we also propose to monitor
under a multivariate Bayesian network each residual in
respect to its sensitivity to faults. We came up with orig-
inal probabilistic limits matching the decisions made by
univariate T2-based statistical tests associated to resid-
uals. The proposed limits are compared to the posterior
probability of the NoC class to decide whether a residual
i deviate from it’s normal behaviour. It’s worth to mention
that structured residuals are by nature assumed to be
conditionally independent and that here only data from
normal operating conditions are considered. These proba-
bilistic limits can be deduced and obtained from Appendix
B. We refer to this probabilistic limit by PLNoCrj . In the
following, we note the subset of tests associated to a fault
Fk, Γ(Fk). Γ(Fk) is a Boolean variable. Its value depends
on whether the residuals corresponding to Fk are triggered
or not.

3.3 The proposed algorithm for fault diagnosis

In practice, it’s not obvious to identify exactly and describe
efficiently a process’s operating conditions. Hence, it can
be interesting to design a hybrid system and consider
that some new observations do not belong to any of the
considered operating conditions.

D
D

NoC F1 . . . FK
p(NoC) p(F1) . . . p(FK)

r

D r
1). NoC N (µ(1)

r ; Σ(1)
r )

2). F1 N (µ(2)
r ; Σ(2)

r )
...

...
K). FK N (µ(K)

r ; Σ(K)
r )

Fig. 1. A CGN classifier

In (Atoui et al., 2019), authors divide the decision space
into K + 1 sub-spaces, where a new sub-space represents
the class UFC, unknown/ not defined operating condi-
tions. They compare a new observation to the statistical
boundary associated to the class of fault with the highest
posterior probability. Therefore, if it does not belong to it
then it belongs to the class UFC.
This rule is interesting as it can handle unknown faults and
enhance Bayesian network decision making process. In this
paper, we expand this rule to consider as well the multiple
fault problem. We combined this data-driven approach to
the structured residual model-based concept.
Our methodology differs from the BNlimit in terms of the
fault diagnosis methodology. Once a fault is detected, a
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sorting in ascending order is performed to the outputs of
the network except the normal operating conditions. Basi-
cally, we collect in E the faults with the highest posterior
probability to the one with the lowest posterior proba-
bility. Based on the class’ weight (posterior probability),
we compare in descending order the posterior probability
of each class in E to the fault signature corresponding
limits (see Appendix B). One can obviously notice that α
control the degree of acceptation/ exclusion, a higher value
of α would lead to more rejection. These rules are given
in Algorithm 3.3, which shows the steps we propose to
detect and isolate single, multiple and unknown operating
conditions under a BN, for instance, as the one proposed
in Fig. 1.

Algorithm Fault detection and isolation of known and
unknown faults

Input: a new observation (residuals) r : [r1, . . . , rm]
Outputs: the class Cj , Cj ∈ {NoC,F1, . . . , FK , UoC}
to which r belongs

Calculate p(D = Cj |r);
if p(D = NoC|r) ≥ PLNoCr then

r ∈ NoC . Detection
else

Sort on E, {F1, . . . , FK} in ascending order
while e < K − 1 do

if Γ(FE(e)) then
UoC = false
r ∈ E(e) . Diagnosis

if Uoc then
r ∈ UoC . Rejection

In the next section, we shall demonstrate the applicability
of the proposed approach using the heating water process.

4. APPLICATION

4.1 process description

To illustrate the interest of our approach, we use a water
heater process (Atoui et al., 2016). It consists of a tank
(see Figure 2) equipped with two resistors R1 and R2.
The inputs are the water flow rate Qi, the electric power
for heating P and the water temperature Ti. The outputs
are the water flow rate Q0 and the temperature T reg-
ulated around an operating point. The thermal process
objective is to assure a constant water flow rate at a given
temperature.

Fig. 2. Heating water process

In this analysis, only sensor and components faults are
considered: H water level sensor, T output temperature
sensor, Q0 output flow rate sensor. Using Luenberger ob-
server, for each instant p, a residuals vector [r1(p) r2(p)] =
[T (p)− T̂ (p) H(p)− Ĥ(p)]T is generated to detect a fault
occurrence on H level sensor or T temperature sensor.
Moreover, according to the physical equation between out-
put flow rate Q0 and liquid level H (determined by using
the Torriceli-rule: Q0(p) = η

√
H(p)), another residual

r3(p) = [Q0(p)− Q̂0(p)] is generated.
The residuals generator r(p) = [r1(p) r2(p) r3(p)]T is
structured and evaluated in respect to its corresponding
signature matrix. The residuals are sensitive to faults,
li·j = 1, as below

r1 = {FT }, l1·1 = 1,
r2 = {FH}, l2·2 = 1,

r3 = {FH , FQ0}, l3·2 = 1, l3·3 = 1

4.2 Scenarios

To demonstrate our proposal, we generate samples as
training data as follows
• Normal operating Conditions: 80 samples of each

residual;
• FT operating conditions : 80 samples of each residual;
• FQ0 operating conditions: 80 samples of each residual.

This data are used to learn our classifier. One can notice
the absence of the fault 2, FH . We choose to consider it as
an unknown operating condition to test our approach. We
recall the signature of FH involve two residuals, r1 and r2.
To compare our approach and present its interest we
generated 250 residuals as test data. We have considered
the following cases/ scenarios (see table 2) as mentioned
in the following
• case 1: normal operating conditions case - we simu-

lated free fault samples.
• case 2: we simulate faulty operating conditions - we

consider a single fault: fault 2, FT .
• case 3: in this case we consider multiple faults - We

simultaneously consider fault 1, FT , and fault 3, FQ0 .
• case 4: we are still in faulty operating conditions. But

here we consider only fault FQ0 .
• case 5: we simulated unknown faulty operating con-

ditions. We simulate Fault FH , and collect residuals.

cases samples Operating cdt. Fault(s) Label
1 1 : 50 NoC none NoC
2 51 : 100 FT single (=1) FT

3 101 : 150 FT & FQ0 multiple (>1) UoC
4 151 : 200 FQ0 single (=1) FQ0
5 201 : 250 UoC unknown UoC

Table 2. The different proposed scenarios

4.3 Results

We have compared our new Bayesian network to the
BN-based method proposed in (Atoui et al., 2019). The
obtained results are given in Figures 3 and 4.
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0 [Case 1] 50 [Case 2] 100 [Case 3] 150 [Case 4] 200 [Case 5] 250
0

NoC

Fault 1

Fault 3

UoC

NoC

Fault 1

Fault 3

UoC

Labels

Fig. 3. Results of the approach proposed by (Atoui et al.,
2019)

0 [case 1] 50 [case 2] 100 [case 3] 150 [case 4] 200 [case 5] 250
0

NoC

Fault 1

Fault 3

UoC

NoC

Fault 1

Fault 3

UoC

Labels

Fig. 4. Results of our proposed approach

Our approach is able to classify correctly single, multiple
and unknown faults under a same tool. It combines the
faults signature, a model-based concept, with the dis-
crimination ability of data-driven classifiers. The obtained
results are very promising.
In the normal operating conditions scenarios, the two
methods provide similar results. They are both able to
respect a false alarm rate. Therefore they statistically
decide about the presence of faults. In case 2 where we
have introduced Fault FT , similarly, both approaches were
able to recognise it.
We have considered multiple faults in scenario 3. We
simultaneously introduced fault FT and fault FQ0 . One
can notice in the figures that only our approach is able
to recognize both faults while the data-driven approach
proposed in (Atoui et al., 2019) is able to only recognize
FT . Our proposal gives a new perspective to enhance
decisions under BN classifiers. It relies on the signature of
faults learned from the knowledge of the process. This way
the proposed method drive up a BN classifier to handle
multiple faults.
In case 4 we are still in faulty operating conditions. But
here we consider only fault 3, FQ0 . Once again, we show
the capacity of the methods to discriminate between faults.
We simulated unknown faulty operating conditions in
case 5. We have simulated Fault 2, FH , and collected
residuals. These residuals are presented for the first time
to both methods. Unknown faults are not well considered
in the FDD literature whereas it’s an important piece
in the fault diagnosis puzzle. We can notice that our

approach similarly to BNlimit are able to consider the
new observations simulated in case 5 as unknown operating
conditions.

5. CONCLUSION

In this paper we proposed an interesting Bayesian network
scheme for fault detection and diagnosis. Our proposal
outperforms the state of the art. The hybrid diagnosis
BN-based scheme can be a serious solution to diagnose
multiple and unknown faults in a multivariate process.
The obtained results are promising and incite for further
investigation.

Appendix A. FAULT ISOLATION

Let us consider the statistic ∆k associated to a class Cj ,
j = {1, . . . ,K + 1}, given by:

∆2
j = (r−mj)TS−1

j (r−mCj ) (A.1)
where mj and Sj are the considered parameters of the
distribution of the class Cj .

The control limit, CL∆j
, associated to ∆2, in respect to

α, is given by
a(N2 − 1)
N(N − a)Fα(a,N − a) (A.2)

with Fα is the 1−α quantile of a Fisher distribution, which
is the control limit, denoted by CLT2

j
.

Then, an observation r belongs to the class Cj if T 2 is
lower or equal to its control limit CLT2

j
. Let’s develop the

inequality equation as below
r ∈ Cj , if,

e−
1
2 ∆Cj ≥ e− 1

2CL
Cj
∆

1
2πm2 |SCj |

1
2

e− 1
2 ∆Cj ≥ 1

2πm2 |SCk |
1
2

e− 1
2CL

Cj
∆

p(r|D = Cj) ≥ p(r∗|D = Cj) (A.3)
where r∗ is an observation of r with r∗ ∈ Cj and ∆Cj =
CLCk∆ .
Let’s multiply each side of (A.3) by p(r) as below

p(r|D = Cj)p(D = Cj)
p(r) ≥ p(r∗|D = Cj)p(D = Cj)

p(r)
(A.4)

where

p(r) =
k=1∑
K

p(r|D = Cj)p(D = Cj) (A.5)

Thus, we deduce the following rule
r ∈ Cj , if p(D = Cj |r) ≥ PLCk (A.6)

with

PLCk = p(r∗|D = Cj)p(D = Cj)
p(r) (A.7)

This rule allows to test statically the membership of a new
observation to the class Cj . It’s worth to mention that
p(D = Cj |r) corresponds to the posterior probability of
an observation r of r given the value Cj of the node D.
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Appendix B. DETECTION OF FAULTY RESIDUALS

In the following we will focus only on the normal operating
class NOC where residuals are assumed to be condition-
ally independent.
Consider a univaraite statisic δ, for a given residual ri, i =
1, . . . ,m and in respect to class NoC, given by:

δri
NoC = (ri −mi

NoC)2/σ2
NoC (B.1)

where mNoC and σNoC are the considered parameters of
the distribution of ri under the class NoC, assumed to
follow a normal distribution.
Let’s develop the inequality equation given below

rj ∈ NoC, if,
δri
NoC ≤ CL

NOC
δ

e− 1
2 δ

ri
NoC ≥ e− 1

2CL
NoC
δ

1
2πm

i

2 σNoC
e
− 1

2

(x−mj
Ci

)2

σ2
NoC ≥ 1

2πm
i

2 σNoC
e− 1

2CL
NoC
δ

p(ri|NoC) ≥ p(r∗i |NoC)

In respect to the nature of the structured residuals, we
continue the development started above, in the context of
normal operating conditions, as below
p(r/rj |rj , NoC)(rj |NoC) ≥ p(r/rj |rj , NoC)p(r∗j |NoC)

p(NoC|r) ≥
p(r/rj |NoC)p(r∗j |NoC)

p(r)

where r = [r1, . . . , rm]T , rj is an observation of rj with
r∗j ∈ NOC and ∆NoC = CLNoC∆ . r/rj is the vector r
except rj . The distribution of r∗j is given by

p(r/rj |NoC) =
∏

rs∈r/rj

p(rs|NoC) (B.2)

Thus, we deduce the following rule
rj ∈ NOC, if p(NOC|r) ≥ PLNOCrj (B.3)

with

PLNOCrj =
p(r/rj |NOC)p(r∗j |NOC)p(NOC)

p(r) (B.4)
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