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Abstract: The dissipativity formulation of both the First and Second Law of thermodynamics
involve the notion of cyclo-dissipativity. This motivates to revisit the, rather scarce, literature
on cyclo-dissipativity. It turns out that by ’symmetrizing’ the basic definitions of dissipativity
theory as introduced in the seminal 1972 paper of Jan Willems some novel results can be obtained
which have direct consequences for cyclo-dissipativity. A related contribution, also motivated
by thermodynamics, is the notion of one-port cyclo-passivity, which provides a new angle to the
Second Law of thermodynamics.
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1. INTRODUCTION

Consider a macroscopic thermodynamic system. There are
two external ports 1 . The first port is the mechanical one,
with port variables being the pressure 2 −P and the rate
of volume change uV := V̇ , where V is the volume. The
instantaneous power exerted by the environment on the
thermodynamic system is thus given by

−PuV = rate of mechanical work (1)

Second port is the thermal port, where the thermodynamic
system is connected to a heat source, with port variables
the temperature T and the heat flow q from the heat source
into the system.

The First Law of thermodynamics is expressed by assum-
ing the existence of a function E of the state x of the ther-
modynamic system, satisfying along all the trajectories of
the thermodynamic system

E(x(t2))− E(x(t1)) =

∫ t2

t1

q(t)− P (t)uV (t)dt(
=

∫ t2

t1

q(t)dt−
∫ t2

t1

P (t)dV (t)

) (2)

for all t1 ≤ t2. The function E is the total energy of
the thermodynamic system, and (2) expresses that the
increase of the total energy E is equal to the incoming
heat flow (through the thermal port) minus the mechan-
ical work performed by the system on the environment
(through the mechanical/hydraulic port). Often the energy
function E is bounded from below, in which case it can be
turned into a nonnegative storage function by adding a
1 The discussion can be easily extended to cases where the me-
chanical port is replaced, or extended, by other types of ports; e.g.,
chemical, electrical.
2 In order to stick with the usual notation in thermodynamics we
follow the physics convention, where PuV is the mechanical work
exerted by the thermodynamic system on the environment. Instead,
in the system-theoretic sign convention the mechanical work exerted
by the environment on the thermodynamic system is considered.

suitable constant. Then the First Law of thermodynamics
can be equivalently expressed as losslessness with respect
to the supply rate

s(q, P, uV ) = q − PuV , (3)

with storage function E. On the other hand, for a general
thermodynamic system there is no reason why E should
be bounded from below. This calls for the extension to
cyclo-losslessness, allowing for indefinite energy functions.

The dissipativity interpretation of the Second Law of
thermodynamics is less clear. The standard argumentation
in classical thermodynamics, see e.g. Fermi (1936), is to
derive, by using the Carnot cycle, the inequality∮

q(t)

T (t)
dt ≤ 0 (4)

for all cyclic processes, where equality holds for so-called
reversible cyclic processes. Furthermore, based on this,
one defines the entropy S as a function of the state
of the thermodynamic system, and derives the Clausius
inequality

S(x(t2))− S(x(t1)) ≥
∫ t2

t1

q(t)

T (t)
dt. (5)

This leads to the dissipativity formulation of the Second
Law as given in Willems (1972), see also Haddad (2019).
Indeed, if the entropy S can be assumed to be bounded
from above, then it follows that the thermodynamic sys-
tem is dissipative with respect to the supply rate − q

T
and storage function −S. However, similarly to the pre-
vious dissipativity interpretation of the First Law, there
is no reason why in general the entropy is bounded from
above, and thus again we have to take recourse to cyclo-
dissipativity. It should be also noted that the standard
definition of the entropy function is based on the assump-
tion Fermi (1936); Kondepudi & Prigogine (2015) that any
state can be reached from a certain ground-state using
reversible transformations; i.e., transformations where (4)
is satisfied with equality. From the point of view of irre-
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versible thermodynamics this is a restrictive assumption
Kondepudi & Prigogine (2015).

The theory of dissipative systems in systems and control
theory originates from the seminal paper Willems (1972).
The notion of cyclo-dissipativity was first explicitly for-
mulated in Willems (1973); although implicitly the notion
was already present in Willems (1971). In the technical
report Hill & Moylan (1975) cyclo-dissipativity was further
explored, extending the fundamental results for ordinary
dissipativity obtained in Willems (1972). Since then the
notion of cyclo-dissipativity has not received much de-
tailed attention, although the concept regularly appears
in passivity-based control (e.g. Ortega at al. (2008)) and
stability analysis of interconnected systems Moylan (2014).
In Section 2 we will revisit the notions of dissipativity and
cyclo-dissipativity, by unifying earlier developments and
thus arriving at some new results, including an external
characterization of cyclo-dissipativity and a characteri-
zation of the set of (indefinite) storage functions. More
details, proofs and extensions can be found in van der
Schaft (2020). Direct applications to thermodynamics will
be formulated at the end of Section 2. Another application
to thermodynamic (as well as other physical) systems
concerns the notion of one-port cyclo-passivity which will
be introduced in Section 3; see van der Schaft & Jeltsema
(2020) for a full treatment.

2. (CYCLO-)DISSIPATIVITY REVISITED

Consider a nonlinear system

Σ :
ẋ = f(x, u), x ∈ X , u ∈ Rm

y = h(x, u), y ∈ Rp
(6)

for some n-dimensional state space manifold X . Consider
furthermore a supply rate

s : Rm × Rp → R (7)

Throughout it will be assumed that for all solutions of

Σ finite integrals
∫ t2
t1

s(u(t), y(t))dt are well-defined for all
t1, t2.

A, possibly extended, function 3 S : X → −∞ ∪ R ∪ ∞
satisfies the dissipation inequality

S(x(t2)) ≤ S(x(t1)) +

∫ t2

t1

s(u(t), y(t))dt, (8)

if (8) holds for all t1 ≤ t2, all input functions u :
[t1, t2] → Rm, and all initial conditions x(t1), where
y(t) = h(x(t), u(t)), with x(t) denoting the solution of
ẋ = f(x, u) for initial condition x(t1) and input function
u : [t1, t2]→ Rm. In particular this implies that if the left-
hand side of (8) equals ∞, then so does the right-hand
side, and if the right-hand side of (8) equals −∞, then so
does the other side.

A non-extended function S : X → R is called a storage
function 4 for system Σ with supply rate s if it satisfies
(8). This leads to the following standard definition of

3 In this section we will follow the notation from (cyclo-)dissipativity
theory denoting storage functions by S; not to be confused with the
entropy function!
4 Note that we do not yet require S to be nonnegative or bounded
from below.

dissipativity as pioneered in the seminal paper Willems
(1972); see also Hill & Moylan (1980).

Definition 2.1. The system Σ is dissipative with respect
to the supply rate s if there exists a nonnegative storage
function S. If the nonnegative storage function S satisfies
(8) with equality then the system is called lossless.

In case of the supply rate s(u, y) = yTu, u, y ∈ Rm

’dissipativity’ is usually referred to as ’passivity’.

In order to characterize dissipativity, and subsequently
the weaker property of cyclo-dissipativity, let us define the
following, possibly extended, functions 5 Sa : X → R ∪∞
and Sr : X → −∞∪ R

Sa(x) = sup
u,T≥0|x(0)=x

−
∫ T

0

s(u(t), y(t))dt

Sr(x) = inf
u,T≥0|x(0)=x

∫ 0

−T
s(u(t), y(t))dt

(9)

Obviously Sa, Sr satisfy

Sa(x) ≥ 0, Sr(x) ≤ 0 (10)

Furthermore, assuming reachability from x∗ and control-
lability to x∗, we define the, possibly extended, functions
Sac, Src : X → R ∪∞, Src : X → −∞∪ R as 6

Sac(x) = sup
u,T≥0|x(0)=x,x(T )=x∗

−
∫ T

0

s(u(t), y(t))dt

Src(x) = inf
u,T≥0|x(−T )=x∗,x(0)=x

∫ 0

−T
s(u(t), y(t))dt

(11)

Clearly for all x ∈ X
−∞ < Sac(x) ≤ Sa(x)

Sr(x) ≤ Src(x) <∞
(12)

Furthermore, it is straightforward 7 to check that the
above four functions are related by

Sa(x∗) = sup
x
−Src(x) (=

sup
x

sup
u,T≥0|x(−T )=x∗,x(0)=x

−
∫ 0

−T
s(u(t), y(t))dt )

Sr(x∗) = inf
x
−Sac(x) (=

inf
x

inf
u,T≥0|x(0)=x,x(T )=x∗

∫ T

0

s(u(t), y(t))dt )

(13)

In particular it follows that

Sa(x∗) <∞⇔ inf
x

Src(x) > −∞

Sr(x∗) > −∞⇔ sup
x

Sac(x) <∞
(14)

By using the definitions of infimum and supremum it is
easily verified (see Willems (1971, 1972); van der Schaft

5 Here a refers to ’available storage’, and r to ’required storage’. Note
that we deviate from the standard notation, where Sr refers to the
function Src as defined next. In fact, in the standard treatments of
dissipativity Willems (1972, 1971); Hill & Moylan (1975, 1980); van
der Schaft (2017) only the functions Sa and Src (there denoted as
Sr) are used. The present set-up aims at ’symmetrizing’ the picture;
also with a view on cyclo-dissipativity.
6 Here c stands for ’constrained’, since either x(T ) = x∗ or x(−T ) =
x∗.
7 The first equality already figures in van der Schaft (2017); the
second one is similar.
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(2017)) that all four functions Sa, Sr, Sac, Src satisfy the
dissipation inequality (8).

The following theorem summarizes some of the main find-
ings of dissipativity theory as formulated in van der Schaft
(2017), extending the fundamental results of Willems
(1972); see also Hill & Moylan (1980).

Theorem 1. Σ is dissipative if and only if Sa(x) < ∞ for
all x ∈ X (that is, Sa : X → R). If Σ is reachable from
x∗ then Σ is dissipative if and only if Sa(x∗) < ∞, or
equivalently (see (14)) infx Src(x) > −∞. Furthermore,
if Σ is dissipative then Sa is a nonnegative storage func-
tion satisfying infx Sa(x) = 0, and all other nonnegative
storage functions S satisfy

Sa(x) ≤ S(x)− inf
x

S(x), x ∈ X (15)

Moreover, if Σ is dissipative then Src(x) − infx Src(x) is
a nonnegative storage function, and all other nonnegative
storage functions S satisfy

S(x)− S(x∗) ≤ Src(x) (16)

Remark 2.2. In case the system is reachable from x∗ and
Sa(x∗) = 0 dissipativity is equivalent to the external
characterization ∫ T

0

s(u(t), y(t))dt ≥ 0, (17)

for all u : [0, T ] → Rm, T ≥ 0, where y(t) = h(x(t), u(t))
with x(t) the solution of ẋ = f(x, u) for initial condition
x(0) = x∗.

Similar results can be derived for the newly defined func-
tions Sr and Sac; however with the key difference that
Sr ≤ 0, and thus does not correspond to dissipativity.
More details are given in van der Schaft (2020).

Next we come to the study of cyclo-dissipativity, as coined
in Willems (1973) and explored in Hill & Moylan (1975);
see already Willems (1971) for implicit statements.

Definition 2.3. Σ is cyclo-dissipative if∮
s(u(t), y(t))dt ≥ 0 (18)

for all T ≥ 0 and all u : [0, T ] → Rm such that x(T ) =
x(0). Assume furthermore that Σ is reachable from x∗ and
controllable to x∗. Then Σ is called cyclo-dissipative with
respect to x∗ if ∮

s(u(t), y(t))dt ≥ 0 (19)

for all T ≥ 0 and all u : [0, T ] → Rm such that x(T ) =
x(0) = x∗. In case (18) or (19) holds with equality, the we
speak about cyclo-losslessness.

The following proposition is obvious (substitute x(T ) =
x(0) in (8)).

Proposition 2. If there exists a storage function for the
system Σ then Σ is cyclo-dissipative.

The following theorem extends the results in Hill & Moylan
(1975) in a number of directions; see van der Schaft (2020)
for the proof.

Theorem 3. Assume again that Σ is reachable from x∗ and
controllable to x∗. Then Σ is cyclo-dissipative with respect
to x∗ if and only if

Sac(x) ≤ Src(x), x ∈ X (20)

In particular, if Σ is cyclo-dissipative with respect to x∗

then both Sac and Src are storage functions, and thus Σ
is cyclo-dissipative. Furthermore, if Σ is cyclo-dissipative
with respect to x∗ then

Sac(x
∗) = Src(x

∗) = 0, (21)

and any other storage function S satisfies

Sac(x) ≤ S(x)− S(x∗) ≤ Src(x) (22)

The most interesting application of the above results to
thermodynamics concerns the definition of the entropy
function. Indeed, assuming reachability from and control-
lability to a certain ground state x∗ it follows from Theo-
rem 3 that (4) implies the existence of storage functions S
satisfying Sac(x) ≤ S(x)− S(x∗) ≤ Src(x). Hence for any

such S the function S̃(x) := −S(x) qualifies as a possible
entropy function satisfying the Clausius inequality (5).

At the same time this leads to the question of uniqueness
of the entropy function. For example, a ’maximal’ entropy
function could be defined as S̃(x) := −Sac(x).

3. ONE-PORT CYCLO-PASSIVITY

Thermodynamic systems generally have two ports, with
one port being the thermal port, and the other e.g. the
mechanical port. One of the consequences of the Second
Law of thermodynamics is that if the temperature at the
thermal port is kept constant no energy can be transferred
from the thermal port to the mechanical port; at least not
in a repeatable manner. This leads to the general notion
of one-port (cyclo-)passivity defined as follows, cf. van der
Schaft & Jeltsema (2020).

Definition 3.1. Consider a system with two ports u1, y1
and u2, y2, which is cyclo-passive with storage function S;
i.e., along every solution

d

dt
S(x(t)) ≤ yT1 (t)u1(t) + yT2 (t)u2(t) (23)

Then the system is one-port cyclo-passive (with respect to
the port u2, y2) if for every constant ȳ1 there exists F such
that for all trajectories for which y1(t) = ȳ1

d

dt
F (x(t)) ≤ yT2 (t)u2(t) (24)

Thermodynamic systems are one-port cyclo-passive with
respect to the mechanical port; as a consequence of the
Second Law. In fact, the storage function F in this case
is given by the Helmholtz energy. A problem of current
investigation is to what extent one-port cyclo-passivity in
the thermodynamic case is equivalent to the Second Law
of thermodynamics.

On the other hand, many other physical systems with
multiple ports share this property of one-port cyclo-
dissipativity; see van der Schaft & Jeltsema (2020).
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