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Abstract: This paper studies statistical properties of a closed-loop subspace model identi-
fication method for a system described with the output-error state-space representation. For
details, the limit value of the matrix to be singular-value-decomposed to estimate the extended
observability matrix is investigated. The contribution is to ensure that the estimate of the
extended observability matrix is consistent up to a similarity transform.
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1. INTRODUCTION

In the early 2000s, closed-loop subspace model identifi-
cation methods have been proposed and their statistical
properties have been studied intensively (e.g. Chiuso and
Picci, 2005; Chiuso, 2006, 2010). The focus has mainly
been on the so-called direct methods based on prediction-
error framework.

Oku et al. (2006a,b) have proposed a closed-loop sub-
space model identification method for a system described
with the output-error state-space representation. Since its
procedure resembles that of the “MOESP” family (e.g.
Verhaegen and Dewilde, 1992), for convenience it is called
CL-MOESP hereinafter. Practical usefulness has been
demonstrated by several closed-loop system identification
experiments (e.g. Oku and Ushida, 2009; Kojio et al.,
2014; Nakayama and Oku, 2018). Asymptotic properties
and optimality of CL-MOESP have been discussed by Oku
(2010). Recently, Oku and Ikeda (2020) have studied the
probability convergence property and the error analysis of
the triangular matrix obtained from QR factorization.

In this paper, the limit value of the matrix to be singular-
value decomposed will be investigated. The contribution is
to prove the limit value of the matrix to be singular-value-
decomposed has the dominant left singular vectors that
span the subspace exactly equivalent to that spanned by
the column vectors of the extended observability matrix
of the system to be identified. It ensures that an estimate
of the extended observability matrix obtained from CL-
MOESP is consistent up to a similarity transform.

2. PROBLEM SETTING AND ASSUMPTIONS

Let us consider a closed-loop system depicted by Fig. 1.
To simplify the problem, a constant gain feedback case is
⋆ This work was supported by JSPS KAKENHI Grant Number
18K04217.

considered (Oku and Ikeda, 2020). Let uk, rk ∈ Rm denote
the input and the external excitation signal, respectively.
yk, ek ∈ Rl denote the output and noise, respectively.
Suppose the signals, uk, yk and rk are measurable, while ek
is not measurable. The set point is assumed to be dk ≡ 0
for ∀k. Suppose that P to be identified is a n-th order linear
time-invariant system of m inputs and l outputs with a
minimal realization described by

xk+1 = Axk +Buk, (1a)

yk = Cxk + ek, (1b)

where xk ∈ Rn denotes the state vector of P. Note that n
is unknown. The input uk is generated by subtraction of
the output yk multiplied by a constant feedback gain K
from the external excitation signal rk, that is,

uk = rk −Kyk. (2)

Through this paper, the following assumptions are made:

A1. The closed-loop system is internally stable, i.e.,
|λi(Ā)| < 1, where Ā := A−BKC.

A2. The noise {ek} is an unknown discrete-time Gaussian
process with the mean E[ek] = 0 and the covariance
E[eke

T
ℓ ] = Ωeeδkℓ, where E[·] denotes the statistical

expectation.
A3. The external excitation signal {rk} is a known

discrete-time Gaussian process with the mean E[rk] =
0 and the covariance E[rkr

T
ℓ ] = Ωrrδkℓ. It persistently

excites the closed-loop system appropriately.
A4. {rk} and {ek} are uncorrelated with each other in the

sense that, for ∀i,∀j ∈ Z,

lim
M→∞

1

M

M∑
k=1

ei+kr
T
j+k = 0.

A5. For ∀i ≥ 0, ∀k, xk and rk+i are independent of each
other. So are xk and ek+i.

A6. The signals {xk}, {rk}, {uk}, {yk} and {ek} are
ergodic stationary processes.
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Fig. 1. A closed-loop system with constant gain feedback

3. NOTATIONS

The following notations are adopted: given i-successive
sampled data of u from k, i.e., {uk, · · · , uk+i−1}, define

ui(k) :=
[
uT
k · · · uT

k+i−1

]T
. (3)

Note that ri(k), yi(k) and ei(k) are also defined in a similar
manner to (3).

Given a sequence {uk}, the block Hankel matrix, Ui,s,j ∈
Rms×j , is defined as

Ui,s,j :=


ui ui+1 · · · ui+j−1

ui+1 ui+2 · · · ui+j

...
...

...
ui+s−1 ui+s · · · ui+s+j−2

 (4)

= [ us(i) us(i+ 1) · · · us(i+ j − 1) ] ,

where the first subscript, i, is the same as the subscript on
the top-left block element, and the others, s and j, mean
that Ui,s,j ∈ Rms×j is of s block rows and j columns. Note
that s > 0 is a user-defined parameter which is chosen
to be sufficiently larger than n. For sequences {yk}, {rk}
and {ek}, the block Hankel matrices Yi,s,j , Ri,s,j and Ei,s,j
are respectively defined in a manner similar to (4). These
matrices are called the data Hankel matrices for the rest
of this paper.

For brevity’s sake, the following notations with respect to
the data Hankel matrices are introduced: for an integer N
that is sufficiently larger than s,

Rf := R0,s,N , Uf := U0,s,N , Ef := E0,s,N ,

Rp := R−s,s,N , Up := U−s,s,N , Ep := E−s,s,N ,

Yf := Y0,s,N , R :=
[
RT

p RT
f

]T
, E :=

[
ET
p ET

f

]T
.

Note that the subscriptions “f” and “p” respectively
represents that the data Hankel matrices are made of
relatively “future” and “past” data, respectively.

For a sequence {xk}, define
Xi,j := [ xi xi+1 · · · xi+j−1 ] , (5)

and moreover define Xf := X0,N and Xp := X−s,N .

Given a quadruple of matrices (E,F,G,H) of appropriate
sizes, define the notations as follows (Ikeda, 2014):

Oi(G,E) :=
[
GT (GE)T · · · (GEi−1)T

]T
, (6)

Li(E,F ) :=
[
Ei−1F · · · EF F

]
, (7)

Ti(E,F,G,H) :=


H 0
GF H
...

. . .
. . .

GEi−2F · · · GF H

 . (8)

Especially, with respect to the system (1) to be identified,
the extended observability matrix, the reversed extended
controllability matrix and the block-Toeplitz matrix made
of the Markov parameters, denoted briefly by O, L and T ,
respectively, are respectively defined as

O := Os(C,A) ∈ Rls×n, L := Ls(A,B) ∈ Rn×ms,

T := Ts(A,B,C, 0) ∈ Rls×ms.

The covariance matrix of Rp as well as Rf is denoted by

ΩR := lim
N→∞

1

N
RpRT

p = lim
N→∞

1

N
RfRT

f =

Ωrr 0
. . .

0 Ωrr


(9)

4. BRIEF REVIEW OF CL-MOESP

CL-MOESP is a solution to the following closed-loop
subspace model identification problem.

Definition 1. Consider a closed-loop system depicted by
Fig. 1. The problem is to estimate the order n of P to be
identified and obtain the minimal realization (A,B,C, 0)
of (1) up to a similarity transform from the measurements
of {rk}, {uk} and {yk}.

The procedure of CL-MOESP is as follows (Oku et al.,
2006a,b):

Algorithm 1. (CL-MOESP). Suppose that a set of sam-
pled data sequences {rk}，{uk} and {yk} be obtained
from a system identification experiment of the closed-loop
system as depicted in Fig. 1. Then, a state-space model
which represents the input/output relation of P can be
obtained according to the procedures as follows:

1. Execute the QR factorization of the following matrix: R
Up

Uf

Yf

 =

L11

L21 L22

L31 L32 L33

L41 L42 L43 L44



QT

1

QT
2

QT
3

QT
4

 (10)

2. Compute P and Υ
1
2 as follows:

P := L21 − L21L
T
31

(
L31L

T
31

)−1
L31 (11)

Υ
1
2 := L41P

T
(
PPT

)− 1
2 . (12)

3. To estimate the extended observability matrix, O,
up to a similarity transform, execute singular value
decomposition (SVD) of Υ

1
2 and we have

Υ
1
2 =

[
Û Û⊥ ] [ Σ̂

Σ̂⊥

][ V̂ T(
V̂ ⊥

)T

]
, (13)

where the diagonal matrix Σ̂ ∈ Rn×n has n dominant
singular values as its diagonal entries. Namely, the
number of the dominant singular values can estimate
the order of P. Note that the orthogonal matrix Û is
an estimate of O up to a similarity transform.

4. The set of estimates of the coefficients of a state-space
representation of P, i.e., (Â, B̂, Ĉ, D̂), can be obtained
according to the procedure similar in the paper of
Verhaegen and Dewilde (1992).

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020



5. DERIVATION OF THE MATRIX I/O EQUATIONS

Substitution of (2) into (1a) yields

xk+1 = Āxk +Brk +Beek, (14)

where Be := −BK. Recursive use of (14) gives, for i ≥ 1,

xk+i = Āixk + Li(Ā, B)ri(k) + Li(Ā, Be)ei(k). (15)

For an integer s sufficiently greater than n, Using the
output equation (1b) and (15),

yk+i = CĀixk + CLi(Ā, B)ri(k)

+ CLi(Ā, Be)ei(k) + ek+i (16)

is derived for i = 0, · · · , s − 1. Then, stack (16) for
i = 0, · · · , s− 1, and we have the following equation:

ys(k) = Oyxk + Tyrs(k) +Hyes(k), (17)

where Hy := Ts(Ā, Be, C, I),

Oy := Os(C, Ā), Ty := Ts(Ā, B,C, 0). (18)

Moreover, place (17) for k = 0, · · · , N side by side, and we
obtain the following matrix input-output equation:

Yf = OyXf + TyRf +HyEf . (19)

Follow the same path as mentioned above, and we have
the following equation with respect to us(k):

us(k) = Ouxk + Turs(k) +Hues(k) (20)

where H := −KC, Hu := Ts(Ā, Be,H,−K),

Ou := Os(H, Ā), Tu = Ts(Ā, B,H, I). (21)

Then, place (20) for k = 0, · · · , N side by side, and we
derive the following matrix input-output equation:

Uf = OuXf + TuRf +HuEf . (22)

Now, let us get back to (15) for i = s. Replace k in (15)
by k − s and we have

xk = Āsxk−s + Lrrs(k − s) + Lees(k − s), (23)

where Lr := Ls(Ā, B) and Le := Ls(Ā, Be). Then, place
(23) for k = 0, · · · , N side by side, and we have the s-step
ahead matrix state equation as follows:

Xf = ĀsXp + LrRp + LeEp (24)

Finally, substitute (19) and (22) into (24) and notice an
analogy between Up and Uf with respect to (22), and we
have the following matrix input-output equations:[ Up

Uf

Yf

]
=

 Ou

OuĀ
s

OyĀ
s

Xp +

[ Tu 0
OuLr Tu
OyLr Ty

]
R

+

[ Hu 0
OuLe Hu

OyLe Hy

]
E (25)

6. ON ASYMPTOTIC PROPERTIES OF L MATRIX

Oku and Ikeda (2020) have studied error analysis of the
triangular matrix obtained from the QR factorization (10).
Especially, since (10), (11) and (12) imply that the matrix
with 3 block entries [

LT
21 LT

31 LT
41

]T
(26)

plays a key role in derivation of Υ
1
2 and the subsequent

procedures of CL-MOESP, they have investigated conver-
gence properties and the error covariance of (26). This
section is dedicated to introducing the results of Oku and
Ikeda (2020) used here.

Lemma 2. Assume that the matrix R is of full row rank.
Then, it holds that[

L21

L31

L41

]
=

[ Up

Uf

Yf

]
RTL−T

11 (27)

Substitution of (25) into (27) with some calculations brings
us to [

L21

L31

L41

]
= SN +NN , (28)

where the signal-based component, SN , and the noise-
based component, NN , of (28), are given respectively as
follows:

SN :=

 Ou

OuĀ
s

OyĀ
s

XpRTL−T
11 +

[ Tu 0
OuLr Tu
OyLr Ty

]
L11,

NN :=

[ Hu 0
OuLe Hu

OyLe Hy

]
ERTL−T

11 .

The lower triangular matrix L̄11 is defined as the Cholesky
factor, up to a sign matrix, of the following asymptotic
covariance matrix:

L̄11L̄
T
11 := lim

N→∞

1

N
RRT =

[
ΩR 0
0 ΩR

]
. (29)

Notice that the off-diagonal block elements are null since,
due to A3, limN→∞

1
NRpRT

f = 0. Hereafter, let us assume
that the sign matrix is determined compatibly with the
context.

The following theorem is for the probability convergence
property of the signal-based component SN :

Theorem 3. (Oku and Ikeda, 2020) Under the assumptions
from A1 to A6,

plim
N→∞

1√
N

SN =

[ Tu 0
OuLr Tu
OyLr Ty

]
L̄11 =: S∞.

Proof. Note that from the assumption A5 the following
uncorrelation property holds:

lim
N→∞

1

N
XpRT = 0.

For ∀ε > 0, as N → ∞,

P

[∥∥∥∥ 1√
N

SN − S∞

∥∥∥∥
F

> ε

]

≤ P

∥∥∥∥∥∥
 Ou

OuĀ
s

OyĀ
s

 1

N
XpRT

(
1√
N

L11

)−T
∥∥∥∥∥∥
F

+

∥∥∥∥∥
[ Tu 0
OuLr Tu
OyLr Ty

](
1√
N

L11 − L̄11

)∥∥∥∥∥
F

> ε


−→ 0,

where ∥ · ∥F denotes the Frobenius norm. □

The following theorem is for the probability convergence
property of the noise-based component NN :

Theorem 4. (Oku and Ikeda, 2020) Under the assumptions
from A1 to A6,
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plim
N→∞

1√
N

NN = 0. (30)

Proof. The assumption A4 gives

lim
N→∞

1

N
ERT = 0.

Then, for ∀ε > 0, it holds that

lim
N→0

P

∥∥∥∥∥
[ Hu 0
OuLe Hu

OyLe Hy

]
1

N
ERT

(
1√
N

L11

)−T
∥∥∥∥∥
F

≥ ε

 = 0

□
Corollary 5. The limit values of 3 block entries in (26) are
given by L̄21

L̄31

L̄41

 := plim
N→∞

1√
N

[
L21

L31

L41

]
=

[ Tu 0
OuLr Tu
OyLr Ty

]
L̄11. (31)

Proof. It is obvious from A5, (28), Theorems 3 and 4. □

7. MAIN RESULT

Since from (13) the dominant left singular vectors of Υ
1
2 is

crucially important to estimate the extended observability
matrix O, the limit value of Υ

1
2 , or equivalently, the limit

value of Υ, i.e.,

Ῡ := plim
N→∞

1

N
Υ = plim

N→∞

1

N
Υ

1
2

(
Υ

1
2

)T

(32)

is the center of interest in this paper.

The limit values of (11) can be calculated as

P̄ := plim
N→∞

1√
N

P

= plim
N→∞

(
1√
N

L21

−
(

1

N
L21L

T
31

)(
1

N
L31L

T
31

)−1
1√
N

L31

)
= L̄21 − L̄21L̄

T
31

(
L̄31L̄

T
31

)−1

L̄31. (33)

The following theorem is the main result of this paper.

Theorem 6. The limit of Υ is given as follows:

Ῡ = OL
(
P̄ P̄

T
)
LTOT.

Proof. A complete proof requires tediously long calcula-
tion. A sketch of proof is provided here.

Substitute (12) into (32) and take the limit as N goes to
infinity, and we have

Ῡ =
(
L̄41P̄

T
)(

P̄ P̄
T
)−1 (

L̄41P̄
T
)T

(34)

Then, we will calculate the two terms, L̄41P̄
T
and P̄ P̄

T
in

(34). Substitution of (31) into (33) with some calculation
brings us to

P̄ P̄
T
= TuΩR

(
Ω−1

R − LT
rOT

u (35)

·
(
OuLrΩRLT

rOT
u + TuΩRT T

u

)−1 OuLr

)
ΩRT T

u ,

and moreover,

L̄41P̄
T
=

(
Oy − TyT −1

u Ou

)
LrT −1

u P̄ P̄
T
. (36)

Note the invertibility of Tu = Ts(Ā, B,H, I). Note also
that the assumption A3 means the invertibility of (35).
Substitution of (35) and (36) into (34) yields

Ῡ =
(
Oy − TyT −1

u Ou

)
LrT −1

u P̄ P̄
T

· T −T
u LT

r

(
Oy − TyT −1

u Ou

)T
(37)

Now, note again that Tu is invertible and actually,

T −1
u = Ts(Ā−BH,B,−H, I) = Ts(A,B,−H, I). (38)

Then, keeping the definitions of notations (6), (7), (8), (18)
and (21) in mind, two terms, Oy − TyT −1

u Ou and LrT −1
u ,

in (37) can be calculated as

Oy − TyT −1
u Ou = Os(C, Ā−BH) = Os(C,A) = O,

LrT −1
u = Ls(Ā−BH,B) = Ls(A,B) = L.

Hence, this concludes the sketch of proof. □

Theorem 6 implies that the dominant left singular vec-
tors of Ῡ span the subspace exactly equivalent to the
subspace spanned by the column vectors of the extended
observability matrix O of the system (1) to be identified.
It confirms that CL-MOESP(Oku et al., 2006a,b) gives a
consistent estimate, up to a similarity transform, of the
extended observability matrix Û via the singular value
decomposition of Υ

1
2 of (13).
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