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Abstract: Borrowing terminology from fluid mechanics, the concepts of Eulerian and La-
grangian optical flow sensing are introduced. Eulerian optical flow sensing assumes that each
photoreceptor in the camera or eye can instantaneously detect feature image points and their
velocities on the retina. If this assumption is satisfied, even a two pixel imaging system can
provide a moving agent with information about its movement along a corridor that is precise
enough to be used as a robust and accurate steering signal. Implementing Eulerian optical flow
sensing poses significant challenges, however. Lagrangian optical flow, on the other hand, tracks
feature image points as they move on the retina. This form of visual sensing is the basis for
many standard computer vision implementations, including Lukas-Kanade and Horn-Schunck.
Lagrangian optical flow has its own challenges, not least of which is that it is badly confounded
by rotational components of motion. Combined steering and sensing strategies for mitigating
the effects of rotational motions are considered.
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1. INTRODUCTION

Depth cues coming from both binocular vision as well
as from optical flow are central to animal navigation,
and recent advances in light-weight high-speed computer
hardware have made it possible to implement optical flow
calculations (e.g. Lucas et al. (1981) and Horn and Schunck
(1981)) on mobile robots. Challenges remain, however, in
implementing bio-inspired robot control based on optical
flow due to the complexity of extracting reliable steering
signals from a moving camera. See, e.g. Márquez (2012),
Corvese (2018), and Seebacher (2015).

Factors that confound perception based on visual cues
include

• Depth discontinuities associated with obstacle bound-
aries that may be difficult to distinguish from noise
in optical flow,
• Moving objects in the field of view that produce

localized optical flow that is inconsistent with the
optical flow that is generated by self-motion,
• Ephemeral persistence of features within the field of

view (FoV),
• Flow indeterminacy due to very sparse optical sensor

data in part of the FoV,
• Rotational movement of the optical sensor relative to

the features being observed.

In order for autonomous mobile robots to realize full
autonomy of movement it will be essential to develop a
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deeper understanding of the ways in which animal sensory-
neuro-motor systems deal with such confounding factors.
This very brief note treats visual confounding due to the
presence of a rotational component in a robot vehicles’s
motion.

2. IDEALIZED OPTICAL FLOW

Over many decades, a great deal of research has been
devoted to measuring and mitigating the effects of ro-
tational disturbances Royden (1997). While a number of
mechanism for determining heading based on optical flow
have been proposed—see, for example, Layton and Fajen
(2016)—satisfactory solutions to reliable navigation have
remained elusive. It is against this backdrop that we hope
to obtain insights from the idealized models proposed in
what follows. Specifically, we shall consider optical flow
based steering laws using the perceived quantity time-to-
transit along the lines introduced in Sebesta and Baillieul
(2012), Kong et al. (2013), Seebacher (2015), Corvese
(2018), and Baillieul (2019).

Recall that if a vehicle is moving in a straight line and
a feature point lies somewhere ahead of the vehicle—
possibly to the left or right in the environment, we can
draw a plane that passes through the feature point and is
also perpendicular to the line of travel. The time-to-transit
the feature is defined as the time it will take the vehicle
to follow the straight line path at a constant speed until
it reaches the plane—as illustrated in 2D in Fig. 1(a). As
noted in Baillieul (2019), under the assumption that the
vehicle travels at a constant velocity, the time-to-transit
can be determined from the movement of feature images
on the image plane. Let r denote the radial distance from
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Fig. 1. Vehicle with kinematics (1). Here, the stylized
image plane is compressed to one dimension and
represented by a line segment on the vehicle y-axis.
The vehicle x-axis is the direction of travel, tanϕ = f ,
the pinhole camera focal length, and θ = θ̃ + π

2 .
(a) The geometry of time-to-transit, τ as discussed
in (Baillieul (2019)). (b) The spatial features Or
and O` that are registered at ±1 respectively on the
image plane (y-axis) have world frame coordinates
xr = R, x` = −R, simple geometry shows that

y` = y + f sin(θ) + (R+x+f cos(θ))(cos(θ)+f sin(θ))
sin(θ)−f cos(θ) and

yr = y + f sin(θ) + (R−x−f cos(θ))(f sin(θ)−cos(θ))
f cos(θ)+sin(θ) .

a feature’s image point to the point where the optical axis
intersects the image plane. Then the time-to-transit the
feature point, denoted by, τ , is given by r/ṙ. Fig. 1(a)
illustrates the concept, and details of how time-to-transit
is visually perceived are given in Baillieul (2019).

Remark 1. Because τ can be determined by image motions
in the image plane (or retina), it is not surprising that
there is strong experimental evidence that it is something
that animals can perceive. It must be noted, however, that
τ as perceived as r/ṙ is only equal to the actual time-to-
transit when the velocity is constant, and this constrains
our use of τ as a proxy for feature distance in our steering
laws.

To fix ideas, consider a unicycle vehicle with kinematics

 ẋ
ẏ

θ̇

 =

(
v cos θ
v sin θ
u

)
, (1)

where v is the forward speed in the direction of the
body-frame x-axis, and u is the turning rate. For this
simple vehicle, we examine the difference between a purely
geometric definition of τ and the value of τ that is
perceived by means of the movement of image points in
the image plane.

Definition 1. Consider a feature point with coordinates
(xf , yf ) and a vehicle whose configuration evolves accord-
ing to (1). Given the current configuration (x(t), y(t), θ(t))
and speed v(t), the geometric time-to-transit (geometric
τ) is the time it would take the vehicle with its current
speed v(t) and heading θ(t) held constant to cross a line
intersecting the feature and perpendicular to the current
heading. (See Fig. 1(a).)

Remark 2. Geometric tau is given by the formula

τ(t) =
cos θ(t)(xf − x(t)) + sin θ(t)(yf − y(t))

v
. (2)

3. PERCEPTUAL ALIASING AND QUANTIZATION

It is easy to see that the value of geometric tau given by
(2) is maximized if the vehicle is headed directly toward
the feature point, and it is zero if the heading direction
is perpendicular to the vector from the current vehicle
position (x(t), y(t)) to the featue point (xf , yf ). If the
vehicle is moving along a curved path, as illustrated in
Fig. 1(a), the geometric value of tau (2) will increase
if the vehicle is turning toward the feature point and
decrease if the vehicle is turning away. If the values of τ
are computed by means of the movement of image points
on the image plane for the same motions, the values of
τ = r/ṙ as perceived in the image plane correspondingly
increase or decrease, but they are significantly exagerated
as illustrated in Fig. 2.

Time-to-transit is a proxy for depth or distance, and geo-
metric tau is taken to be ground truth in visual estimation
of distance. In light of the above remark, we must carefully
determine the conditions under which perceived values of
tau can be used for steering. To do this, it is useful to dis-
tinguish between optical flow sensing in which values of τ
are registered instantaneously and continuously at a single
or discrete set of fixed pixels and optical flow sensing in
which feature images must be tracked as they move on the
image plane. Borrowing terminology from fluid mechanics,
we shall call optical flow tau-based perception in which
the tau values are instantaneously sensed at a finite set of
body-fixed photoreceptors Eulerian optical flow sensing.
In Eulerian flow tau-sensing, no single feature point has
any significance. The values of tau are instantaneously
perceived, utilized in the steering law, and discarded in
favor of a continuously updated stream of new values. This
is clearly an idealization that will be difficult to realize
with ordinary light cameras, but for depth cameras such
as LIDARs, it is a useful concept. By contrast, we shall
call optical flow sensing in which discrete environmental
feature points give rise to continuously moving image
points on the image plane or retina Lagrangian optical flow
sensing. Cameras with standard optics can approximately

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020



Fig. 2. When time-to-transit, τ is computed using pixel
motions on the retina, values deviate from the corre-
sponding geometric quantities. Here, the vehicle turns
slightly toward the feature as it rises toward the top of
the figure along the green path. While the geometry
of this motion clearly increases τ relative to what it
would have been traveling at the same speed along
the straight (blue) path, the perceived value increases
considerably more.

implement Eulerian flow sensing by using a restricted form
of Lagrangian flow sensing under stringent conditions that
include dense arrays of visible feature points, high densities
of photoreceptors, and very modest rotational components
of the motion.

In Baillieul (2019), the tau-based optical flow sensing
was assumed to be Eulerian, and the following theorem
provided a robust steering law for the vehicle (1).

Theorem 1. Consider a mobile camera moving along an
infinitely long corridor with every point along both walls
being a detectable feature that determines an accurate
value of τ . Suppose the corridor has width 2R as depicted
in Fig. 1(b). Let τr = τ(Or) and τ` = τ(O`) be the
respective times to transit the two feature points whose
images appear at points equidistant on either side of the
optical axis (at ±1). Then for any gain k > 0 there is an
open neighborhood U of (x, θ) = (0, π2 ), U ⊂ {(x, θ) :
−R < x < R; ϕ < θ < π − ϕ} such that for all initial
conditions (x0, y0, θ0) with (x0, θ0) ∈ U , the steering law

u(t) = k(τ` − τr) (3)

asymptotically guides the vehicle with kinematics (1) onto
the center line between the corridor walls.

�

This is proved in Baillieul (2019). It provides a remarkably
robust steering law that works well even when some
of the stated assumptions are significantly relaxed. The
requirement that the photoreceptors be symmetrically
located on opposite sides of the optical axis is not needed,
for instance, and we have the following.

Corollary 1. Consider a mobile camera moving along a
corridor as in Theorem 1, and let τr = τ(Or) and τ` =
τ(O`) be the respective times to transit two feature points

whose images register on opposite sides of the optical axis
at −δ and ε respectively. Then for any gain k > 0 there is
an open neighborhood U ⊂ {(x, θ) : −R < x < R; ϕ <
θ < π − ϕ} such that for all initial conditions (x0, y0, θ0)
with (x0, θ0) ∈ U , the steering law

u(t) = k(τ` − τr) (4)

asymptotically guides the vehicle onto a line parallel to
the corridor walls with the asymptotic limit (x(t), θ(t)) →
(R(δ − ε)/(δ + ε), π/2).

Proof The proof is essentially the same as for Theorem 1,
except the geometry is changed such that the coordinates
of the feature points are

O` =

(
−R

y + f sin(θ) +
(R+ x+ f cos(θ))(δ cos(θ) + f sin(θ))

δ sin(θ)− f cos(θ)

)
and

Or =

(
R

y + f sin(θ) +
(R− x− f cos(θ))(f sin(θ)− ε cos(θ))

f cos(θ) + ε sin(θ)

)
.

�

Remark 3. Clearly if one photoreceptor is significantly
closer than the other to the optical axis, the steady-
state motion will be closer to the wall opposite to the
photoreceptor.

Corollary 2. Consider a mobile camera as in Corollary 1
with the same τ` = τ(O`), τr = τ(Or) and photoreceptors
at the same (−δ, ε) locations in the body frame. For any
gain k > 0, there is an open neighborhood ⊂ {(x, θ) :
−R < x < R; ϕ < θ < π − ϕ} such that for all initial
conditions (x0, y0, θ0) with (x0, θ0) ∈ U , the steering law

u(t) = k(δτ` − ετr) (5)

asymptotically guides the vehicle onto a line parallel to
the corridor walls with the asymptotic limit (x(t), θ(t)) →
((ε− δ)/2, π/2).

�

Under the conditions assumed in the theorem and its corol-
laries, precise steering is possible. For standard light cam-
eras, approximately comparable results can be achieved
using Lagrangian tau-based flow sensing, provided there
is an adequate density of features. The key is to seg-
ment motions into sequences of sense - perceive - act
components. Toward validating this strategy, the following
gives conditions under which piecewise constant curvature
steering together with depth sensing aligns the vehicle on
the centerline of the corridor as desired.

Theorem 2. Consider the planar vehicle (1) for which the
steering law is of the sample-and-hold type:

u(t) = k[τ`(x(ti), θ(ti))− τr(x(ti), θ(ti))], ti ≤ t < ti+1,
(6)

where the sampling instants t0 < t1 < . . . are uniformly
spaced with ti+1 − ti = h > 0. Then for any sufficiently
small sampling interval h > 0, there is a range of values of
the gain 0 < k < kcrit such that the sampled control law
(6) asymptotically guides the vehicle with kinematics (1)
onto the center line between the corridor walls.

Proof: As in Theorem 1, we assume that the forward speed
is constant (v = 1). We also assume a normalization of
scales such that f = 1. It is again convenient to consider
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the angular coordinate φ = θ − π/2. In terms of this, we
have

φ̇ = k[τ`(x(ti), φ(ti) + π/2)− τr(x(ti), φ(ti) + π/2)]

on the interval ti ≤ t < ti+1. Given the explicit formulas
for τ` and τr, and given that the right hand side of
the above differential equation is constant, we have the
following discrete time evolution

φ(ti+1) = φ(ti)

+hk
2 sinφ(t1)(R+ cosφ(ti))− 2x(ti) cosφ(ti)

sin2 φ(ti)− cos2 φ(ti)
(7)

In other words, the discrete time evolution of the heading
φ is given by iterating the x-dependent mapping

g(φ) = φ+ hk
2 sinφ(R+ cosφ)− 2x cosφ

sin2 φ− cos2 φ.
(8)

Differentiating, we obtain

g′(φ) = 1+

2hk(−2− 3R cosφ+R cos 3φ+ 3x sinφ+ x sin 3φ)

cos2 φ− sin2 φ
.

(9)
The numerator is negative in the parameter range of
interest, while the denominator is positive. Hence, we
can choose k sufficiently small that g is a contraction on
−π/4 < φ < π/4 uniformly in x in the range −R < x < R.
Thus the iterates of φ under the mapping (8) converge to
0, and because ẋ = − sinφ, this proves the theorem. �

Remark 4. With this sample-and-hold Eulerian steering
law, the next step is to show that the same path will be
well approximated by a corresponding Lagrangian sample
and hold result and that interleaving very short straight
line segments with the constant curvature law (6) will also
asymptotically align with the desired path. As noted in
Hildreth (1992), for short straight paths, heading direction
can be determined accurately with short two to three
frame sequences.

The next step toward understanding path interpolation
by alternating sequences of straight (for sensing) and
curved (for steering) path segments is a heuristic model for
calculating τ values along curved paths. Specifically, given
a feature point (xf , yf ), instead of computing τ = r/ṙ
along a path (x(t), y(t), θ(t)) of (1), we compute the quasi-
linear time-to-transit

τ∗(t) = r(x(t), y(t), θ(t))/(
∂r

∂x
ẋ+

∂r

∂y
ẏ).

This value separates the component of image movement on
the retina due to tangential speed along the path from the
motion due to curving. Space does not allow a complete
exploration of steering laws based on τ∗, but to summarize
what’s involved, the steps in comparing these with the
Eulerian model are given in the algorithm below.

Conclusion. The stylized models considered above do not
capture all essential aspects of visual navigation, but they
are capable of highlighting purely geometric components
of factors that confound visual perception of motion. Work
is ongoing to understand how these factors are best dealt
with in laboratory settings using state-of-the-art optical
flow such as Ilg et al. (2017).

Algorithm 1 Determine steering signal from Lagrangian
optical flow—Sense - Perceive - Act

1: Choose a time interval h that is compatible with the
rate at which features enter and leave the field of view.

2: Form thee partition: t0 < t1 < . . . with tj+1 − tj = h.
3: Define a segmentation protocol that groups feature

images from each wall whose τ∗ values and image
locations determine the steering signal for the current
time interval.

4: At each switching time tj return to 3 and repeat.
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