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∗∗∗ LIX (CNRS, UMR 7161), École polytechnique, 91128 Palaiseau,

France, (e-mail: Michel.Fliess@polytechnique.edu)
∗∗∗∗ AL.I.E.N., 7 rue Maurice Barrès, 54330 Vézelise, France,
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Abstract: Cascade P-PI control systems are the most widespread commercial solutions for
machine tool positioning systems. However, friction, backlash and wearing effects significantly
degrade their closed-loop behaviour. This works proposes a novel easy-to-tune control approach
that achieves high accuracy trajectory tracking in a wide operation domain, thus being able to
mitigate wear and aging effects.
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1. INTRODUCTION

Current automated machine tools requires high-accuracy
positioning of their working axes. Several mechanical ef-
fects, often hard to identify, may compromise the appro-
priate positioning of the machine end-tool, thus degrading
the finishing quality. To ensure that tolerances are main-
tained, the machine drives are equipped with tracking con-
trollers that aims at efficiently compensate the nonlinear
behaviour of the axes.

State-of-the-art axis-positioning solutions use P and PI
cascade controllers with additional feedforward compen-
sation (Armstrong-Hélouvry et al. (1994)), used to coun-
teract nonlinear effects, such as friction or backlash. In
most of these compensation schemes [ranging from ob-
servers (Huang et al. (2009)), to nonlinear identification
(Merzouki et al. (2007)) or to evolutive algorithms (Guerra
et al. (2019)), the friction model parameters are consid-
ered constant and characterized with offline identification
experiments. These models significantly degrade in the
presence of additional wear-related effects. As a result, the
linear control loops need to be frequently re-tuned, leaving
margin for more efficient strategies.

The need for achieving nominal performance even in the
presence of increased friction, motivates the investigation
of nonlinear control strategies. Gain-scheduling (Van de
Wouw et al. (2008)), sliding-mode (Jin et al. (2009)), back-
stepping (Zhang and Ren (2014)) and nonlinear adaptive
controllers (Papageorgiou et al. (2018)) can eventually
minimize this performance deterioration, but at the ex-
pense of a significant design complexity. In addition to
that, most of these techniques focus on stability of the
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closed-loop dynamics without emphasizing high-accuracy
positioning.

The contribution of this paper is to present a novel con-
trol approach that attempts to answer the aforementioned
challenges: (i) achieve high accuracy trajectory tracking,
while (ii) keeping an easy-to-tune design, and (iii) be-
ing able to mitigate the wear and aging effects in the
closed-loop behaviour. To that end, model-free control
techniques, introduced in (Fliess and Join (2013)) and
successfully deployed in a wide diversity of concrete case-
studies 1 (see e.g. Fliess and Join (2013) and Bara et al.
(2018) and the references therein), will be implemented
and tested.

The outline of the paper is as follows. Section 2 describes
the system model to be controlled, with particular em-
phasis on the wear-related parameters and effects. The
novel control strategy is presented in Section 3, after which
some selected experimental results are showed in Section
4. Finally, some concluding remark and hints on the future
work are drawn in Section 5.

2. SYSTEM DESCRIPTION

The behavior of a machine tool axis can be represented by
a double mass oscillator (motor and load) interconnected
by a spring and a damper, as shown in Fig. 1.

The dynamics of this model are parametrized by the drive
motor and generalized inertias (Jm, Jl respectively), the
spring constant corresponding to the shaft stiffness K
and the damping coefficient of the shaft B. The electro-
mechanical torque and angular speed generated by the
drive motor are denotedMm and ωm, respectively, whereas
the inter-connecting torque and the angular speed of the
load are respectively Ml and ωl.
1 Some applications are patented.
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Fig. 1. Scheme of machine tool axis dynamics: double mass
oscillator

The following transfer function describes the relationship
between the motor rotation speed and the applied motor
torque in the operational domain:

ωm(s) =Bs(s)Mm(s) =

=
1

Jms
·
s2 + 2D1ω01s+ ω2

01

s2 + 2D2ω02s+ ω2
02

Mm(s) (1)

where ω01 =

√
K

Jl
, ω02 = ω01

√
1 +

Jl
Jm

, D1 =
Bω02

2K

and D2 =
B

2ω01Jl
. The dynamics of this system depend

essentially on the inertia of the motor and the load, as well
as on the configuration of the spring-damper system. Note
that in the absence of friction the damping coefficients (D1,
D2) and the natural frequencies (ω01 , ω02) are interrelated:

ω01 = 2πf1, ω02 =

(
Jm + Jl

Jm

)1/2

ω01 , D2 =

(
Jm + Jl

Jm

)1/2

D1

and that we can consider f1 =
ω01

2π
and D1 as the indepen-

dent parameters which influence the whole dynamics of the
system. The aging and wear effects will be modelled so that
these 2 variables can take values in a broad operational
domain, representative of commercially available machines
nowadays: 30 ≤ f1 ≤ 70, 0.08 ≤ D1 ≤ 0.15

The relationship between the rotation speed at the load
ωl and at the motor ωm can also be expressed in the
operational domain as follows:

ωl(s) = Cs(s)ωm(s) =
2D1ω01s+ ω2

01

s2 + 2D1ω02s+ ω2
01

ωm(s) (2)

Furthermore, the current ir can be connected with the
motor torque Mm while neglecting the dynamics of the
electrical system with the following expression:

Mm(s) = As(s)ir(s) =
Kt

Jms
ir(s) (3)

where Kt is the electric torque constant. The current at
the motor i(t) has losses compared to the one generating
torque ir, which can be written as follows:

ir(t) = i(t)− if (t) (4)

where if expresses the current needed to overcome the
friction as a function of the load angular speed:

if (t) = Ds(ωl(t)) =
1

Kt
(Fcsgn(ωl(t)) + Fvωl(t)) (5)

being Fc and Fv the Coulomb and viscous friction coeffi-
cients, respectively. Note also the existence of a backlash
effect on the load which can play a significant role during
the reversal phases of the control signal.

Fig. 2 depicts the dependencies between expressions (1)
- (5) and their interactions with the two control loops
C0, C1which are detailed in the following section.

3. MODEL-FREE APPROACH FOR DRIVE-TRAINS

3.1 Cascade P-PI control

A widely accepted control structure in the industry is a
cascade with 2 loops: (i) an external one on the position of
the load, where typically a proportional corrector is used,
and (ii) an internal one on the speed of the motor, where a
PI is often implemented. The outer loop u1 is closed using
a feedforward term C0ff

and a feedback term C0fb
:

u1(t) =C0 (θl(t)) = C0ff
(t) + C0fb

(θl(t)) =

= θ̇∗l (t) + Φ1 (θ∗l (t)− θl(t)) (6)

where θ∗l (t) is the load position reference trajectory and
Φ1 is a generic corrector applied to the load position error.
The inner control loop is also a combination of feedforward
C1ff

and feedback C1fb
:

u2(t) = C1 (ωm(t)) = C1ff
(t) + C1fb

(ωm(t))) =

=
Jm+ Jl

Kt
ω̇∗
l (t) + Φ2 (ω∗

m(t) − ωm(t)) , ω∗
m(t) = u1(t) (7)

where ω∗
m(t) is the reference trajectory for the motor speed

which, given the cascade structure of Fig. 2, is equal to
the external loop control variable u1(t). The term Φ2

represents a generic corrector applied to the engine speed
error. Note that in the case of a P-PI scheme Φ1 = Kpo

e
and Φ2 = Kpi

e+Kii

∫
edt

3.2 Model-free control principles

Model-free controllers are used in this work because they
combine the well-known and easy-to-tune PID structure
with an “intelligent” term that compensates the effects of
nonlinear dynamics, disturbances or uncertain parameters.

As demonstrated in (Fliess and Join (2013)), most SISO
systems can be written locally as

ẏ = F + αu (8)

where α ∈ R is a constant parameters, which do not
necessarily represent a physical magnitude, and whose
value is chosen by the practitioner such that it allows F
and αu to be of the same order of magnitude.

The data-driven term F , which includes not only the
unknown structure of the system but also any disturbance
(Fliess and Join (2013)), is computed as follows:

F̂ (tk) = ˆ̇y(tk)− αu(tk−1) (9)

Taking the above into consideration, the loop can be
closed with an intelligent controller (iP) using the following
expression:

u = Kpe+
ẏ∗ − F̂
α

(10)

where y∗ is the reference trajectory, e = y − y∗ is the
tracking error and KP ∈ R is a gain. Note that the
tuning complexity of this approach is comparable to a PI
controller, as only 2 parameter need to be chosen.
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Fig. 2. Block diagram of the machine tool control structure

3.3 Cascade model-free control

The classic P-PI structure is replaced by another scheme
based on a iP-iP structure, where the following outer and
an inner input-output model are used (see Lafont et al.
(2015) for an explanation for such MIMO systems):

ẏ1 = F1 + α1u1, ẏ2 = F2 + α2u2

where inputs u1, u2 and outputs y1 = θl, y2 = ωm

corresponds to the signals represented in Fig. 2, and
α1, α2 ∈ R are gains chosen by the control engineer.

Following the expression of a generic iP presented in (10),
the outer and inner loops are respectively closed with
feedback controllers Φ∗

1 and Φ∗
2 to which feedforward terms

C0ff
= θ̇∗l and C1ff

=
Jm+ Jl

Kt
ω̇∗
l , introduced in (6) and

(7), are respectively added as follows:

u1(t) = C0 (θl(t)) = θ̇∗l (t) + Φ1 (θ∗l (t)− θl(t)) ,

Φ∗
1 = K∗

po
(θ∗l (t)− θl(t)) +

1

α1

(
θ̇∗l − F̂

)
(11)

u2(t) = C1 (ωm(t)) =
Jm+ Jl

Kt
ω̇∗
l (t) + Φ2 (ω∗

m(t)− ωm(t))

Φ∗
2 = K∗

pi
em +

1

α2

(
˙ω∗
m − F̂

)
,

em = ω∗
m(t)− ωm(t), ω∗

m(t) = u1(t) (12)

where K∗
po

and K∗
pi

are the proportional gains of the outer
and inner iP, respectively.

4. EXPERIMENTAL RESULTS

The P-PI cascade controller and the model-free iP-iP
control system, expressed respectively in (6)-(7) and in
(11)-(12) have been thoroughly compared. To that end, a
benchmark reference trajectory has been selected (see Fig
3a), where several inversions zones challenge the control
system.

To quantitatively compare both control approaches, the
following 2 key performance indicators have been chosen:

ITAE =

∫ T

0

t|θl − θ∗l |dt, IAU =

∫ T

0

|u|dt

which will be computed considering the whole testing
interval t ∈ [0, 10].

Fig. 3b and Table 1 allow to see and quantify the behaviour
of each strategy. In both elements, 4 different control

Fig. 3. a) Load reference trajectory; b) Tracking error

configurations have been analysed for a system with signif-
icantly different dynamic behaviour (in configuration Σ1,
D1 = 70, f1 = 0.15, while in Σ2, D1 = 30, f1 = 0.08):

(1) a P-PI, whose gains (Kpo
,Kpi

,Kii) are obtained from
a commercial control system for machine tools

(2) a P-PI, whose gains (Kpo
,Kpi

,Kii) have been opti-
mised with respect to criteria J = ITAE+wu ∗IAU
for a specific operation condition

(3) an iP-iP, whose gains (α1, α2,K
∗
po
,K∗

pi
) have been

optimized with respect to the same criteria and for
the same specific operation condition

(4) an iP-iP identically tuned, but incorporating a model-
based feedforward (FF).

Note that the last control variant introduces an anticipa-
tory control term:

Cff (s) =
s2 + 2D2ω02s+ ω2

02

s2 + 2D1ω01s+ ω2
1

ω∗
l (s) (13)

which presumes D1 and f1 well know, which is not often
the case, unless off-line identification tests have been
conducted. The motivation to include this term is to
reduce the control effort generated by iP-iP controllers.
However, as the involved parameters may be badly known,
a fifth item to be compared has been introduced in Table
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Table 1. Comparison of PPI and iPiP under different operation conditions

P-PI nom P-PI nom opt iP-iP iP-iP+FF iP-iP+FF (wrong param.)

Σ1(D1 = 70, f1 = 0.15)
ITAE 2.978 · 10−5 1.024 · 10−5 6.823 · 10−6 9.554 · 10−6 9.598 · 10−6

IAU 5.360 5.366 6.221 5.162 5.162

Σ2(D1 = 30, f1 = 0.08)
ITAE 7.319 · 10−2 3.134 · 10−4 1.680 · 10−4 1.913 · 10−4 1.944 · 10−4

IAU 119.6 5.731 5.456 5.343 5.345

1, aiming at assessing the sensitivity of the closed-loop
behaviour to wrong values of D1 and f1 (0.15 and 70
instead of 0.08 and 30, and viceversa).

As can be observed, the iP-IP controller achieves a signif-
icant improvement both with respect to the standard and
the optimised P-PI, both quantitatively -see ITAE- and
qualitatively -lower inversion peaks. Although the control
action is higher in the regular iP-iP control, the inclusion
of an anticipative model not only mitigates this aspect,
but it even achieves a lower tracking error than P-PI.

A key consideration of this work is the assessment of
model-free controllers under a significant variation of wear
related-parameters, namely D1 and f1. To that end, a
Monte-Carlo simulation has been conducted using normal
distributions of such parameters, as depicted in Fig. 4,
where the desired operating domains have been approxi-
mated by conservative normal distributions f1 ∼ N (55, 4)
and D1 ∼ N (0.13, 0.01).

Fig. 4. Histograms with generated values of f1 and D1

The existing control approaches have difficulty in obtain-
ing good behavior in these ranges, which limits the field of
operation to a very restricted set of machines.

Fig. 5. Stem representation of the Monte-Carlo test, with
f1 ∼ N (55, 4) and D1 ∼ N (0.13, 0.01)

Fig. 5 represents the difference in terms of ITAE between
the standard P-PI and the iP-iP control structures for the
generated input parameter combinations. The values are
positive in every tested case, showing that iP-iP provides

also more accurate positioning than P-PI when wearing
effects appear.

5. CONCLUDING REMARKS

An easy-to-tune model-free control approach has been pre-
sented for axis-positioning in machine tool systems. The
preliminary results of this work exhibits an outstanding
tracking behaviour not only under a specific operation con-
dition, but also when a significant wear-induced parameter
range is considered.
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