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Abstract: A novel controller design for nonlinear systems based on inducing a set of differential
algebraic equations is presented. The method generalises the state-derivative feedback control
by employing an arbitrary number of derivatives of the state vector pre-multiplied by nonlinear
gains. To determine these gains, an intermediary control law is indirectly synthesised via convex
modelling and linear matrix inequalities through an induced singular system subject to the
Pantelides algorithm. An example illustrates the effectiveness of the proposal.
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1. INTRODUCTION

Control laws can be classified according to the number
of derivatives or integrals of the state that they include,
being the linear feedback the most elementary case (Bass
and Gura, 1965). Some control laws include the first time
derivative of the state vector in addition to the state
feedback (Cardim et al., 2007); pole placement formulae
for this case have been developed (Abdelaziz and Valášek,
2004); robust generalisations can be found in Faria et al.
(2009).

Feeding back the time derivatives of the state vector may
be better described by leaving expressions in the left-hand
side of the system equation, i.e., having a descriptor form
which might be singular (Lewis, 1986). A control law called
proportional-plus-derivative state feedback which includes
the time derivative of the state vector has been employed
for stabilisation of descriptor linear systems in Duan and
Zhang (2003); generalisations for polytopic (Da Silva et al.,
2011) and nonlinear systems (González et al., 2017) have
appeared. It has been shown in the latter that instead of
feeding back the time derivatives of the states it is possible
to solve the control law from an algebraic loop.

State derivatives might be obtained from accelerometers as
in some practical problems like the car wheel suspension
system (Reithmeier and Leitmann, 2003), the suppres-
sion of vibration in mechanical systems (Abdelaziz and
Valášek, 2004), and the control of bridge cable vibration
(Duan et al., 2005). Alternatively, state derivatives can be
obtained with an arbitrary degree of precision, under mild
conditions, by employing a Levant’s robust differentiator
(Levant, 2003); this is the preferred option for sliding mode
methodologies. This work proposes an LMI generalisation
of previously appeared state-derivative control laws to any
differentiation order. The resulting control law can be
applied to any sufficiently smooth nonlinear system with
? This work has been supported by CONACYT scholarships 731289
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bounded nonlinearities by means of the Levant’s robust
differentiator.

Notation as well as a short introduction to convex mod-
elling, singular systems, the Pantelides algorithm, and
Levant’s robust differentiator, are presented in section 2;
section 3 develops the novel methodology for high-order
state-derivative controller design by inducing differential
algebraic equations; the effectiveness of the approach is put
at test with two nonlinear examples in section 4; finally,
conclusions are discussed in section 5.

2. PRELIMINARIES

Nonlinear systems can be subsumed in convex struc-
tures that share the characteristics of linear parameter
varying (LPV) or Takagi-Sugeno (TS) models: ẋ(t) =∑r

i=1 hi(x)(Aix(t) + Biu(t)), where 0 ≤ hi(x) ≤ 1,∑r
i=1 hi(x) = 1, within a compact set of the state space

that includes the origin. This rewriting allows using a
quadratic Lyapunov function V (x) = xTPx to synthesise
a PDC control law u(t) =

∑r
j=1 hj(x)Fjx(t) via LMIs

X = XT > 0 and AiX+BiMj +(∗) < 0, where P = X−1,
Fj = MjX

−1 (Tanaka and Wang, 2001); this work fol-
lows this outline for a system subject to the Pantelides
algorithm.

Feeding back high-order time derivatives of the state intro-
duces singularities in the system. Roughly speaking, quasi-
linear singular systems consist of differential algebraic
equations which are amenable to the following descriptor
form (Arceo et al., 2018):

E(x)ẋ(t) = A(x)x(t), det(E(x)) = 0. (1)

These systems can be reduced to ordinary differential
equations (ODEs) by means of the Pantelides algorithm;
this is required for many tasks, e.g., simulation; it consists
of the following steps:

(1) Put the singular system (1) into the dynamic de-
composition form (DDF) that splits dynamical and
algebraic relationships, i.e.:
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[
Ẽ(x) 0

0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
A11(x) A12(x)
A21(x) A22(x)

] [
x1(t)
x2(t)

]
, (2)

where det(Ẽ(x)) 6= 0, x =
[
xT1 xT2

]T
.

(2) Take successive derivatives of the algebraic equations
A21(x)x1 +A22(x)x2 = 0 until the missing dynamics
ẋ2(t) are found.

(3) Any simulation will use the dynamical part of (2),
the missing dynamics found in the previous step, and
proper initialisation holding the algebraic restrictions
in (2) and those derived during the previous step.

Feeding back high-order time derivatives of the state
requires a way to obtain these signals. Besides obvious
options such as sensors and solving the algebraic loop for
order 1, x(i)(t), i ≥ 1, can be obtained via a finite-time
convergent Levant’s robust differentiator Levant (2003).

3. MAIN RESULTS

Nonlinear affine-in-control systems of the form

ẋ(t) = A(x)x(t) +B(x)u(t), (3)

where x ∈ Rn is the state vector, u ∈ Rm is the input
vector, and the pair (A(x), B(x)) consists of sufficiently
smooth entries which are bounded on a compact set Ω ⊂
Rn that includes the origin, are considered in this work.

Consider a nonlinear control law of the form:

u(t) =

q∑
i=0

F i(x)x(i)(t), (4)

where F i(x) ∈ Rm×n are nonlinear gains to be determined,
x(i), i ∈ {0, 1, . . . , q} denote the time derivatives of the
state vector x(t). Note that q = 0 produces an ordinary
state feedback control law u(t) = F 0x(t) while q = 1
leads to an algebraic loop that has been considered in the
literature (González et al., 2017).

Substituting (4) in (3) yields:

(A(x)+B(x)F 0(x))x+(B(x)F 1(x)−I)ẋ+

q∑
i=2

B(x)F i(x)x(i)=0,

which, defining x̄ =
[
xT ẋT · · · (x(q−1))T

]T
, can be fur-

ther transformed into a (q × n)-th order descriptor of a
possibly nonlinear singular system:
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0
0 0 · · · 0 B(x)F q(x)

˙̄x(t)=


0 I
0 0
...

...
0 0

−A(x)−B(x)F 0(x) I−B(x)F 1(x)

0 · · · 0
I · · · 0
...

. . .
...

0 · · · I
−B(x)F 2(x) · · · −B(x)F q−1(x)

 x̄(t). (5)

Most plants have fewer inputs than states, so B(x)F q(x)
is generally not full rank. Assuming rank(B(x)F q(x)) = r
the last block row has n− r implicit algebraic restrictions
and r dynamics, all of which can be determined via the
following orderly adaptation of the Pantelides algorithm
(Pantelides, 1988):

(1) Solve for x̄qn−(n−r)+1, x̄qn−(n−r)+2, . . ., x̄qn in terms
of the remaining entries of x̄.

(2) Determine ˙̄xqn−(n−r)+1, ˙̄xqn−(n−r)+2, . . ., ˙̄xqn by tak-
ing the time derivatives of the solved states in the
previous step and substituting any occurrence of
x̄qn−(n−r)+1, x̄qn−(n−r)+2, . . ., x̄qn by their equiva-
lence found in the previous step.

(3) Substitute the new expressions for ˙̄xqn−(n−r)+1,
˙̄xqn−(n−r)+2, . . ., ˙̄xqn into the remaining dynamics.
Notice that only those from the last block row may
require this substitution.

(4) Solve dynamics ˙̄x(q−1)n+1, ˙̄x(q−1)n+2, . . ., ˙̄x(q−1)n+r,
in terms of x̄1, x̄2, . . ., x̄(q−1)n+r.

After performing the previous algorithm the system be-
comes the following standard state-space representation:

˙̄x1
...

˙̄x(q−2)n
˙̄x(q−2)n+1

...
˙̄x(q−2)n+n+r


=



x̄n+1

...
x̄(q−2)n+n

f1(x̄1, . . . , x̄(q−1)n+r)
...

fn+r(x̄1, . . . , x̄(q−1)n+r)



+



0
...
0

g1(x̄1, . . . , x̄(q−1)n+r, F
0
11(x), . . . , F

q
mn(x))

...
gn+r(x̄1, . . . , x̄(q−1)n+r, F

0
11(x), . . . , F

q
mn(x))


, (6)

where fi(·), i ∈ {1, 2, . . . , n + r}, are possibly nonlin-
ear functions of the states, gi(·), i ∈ {1, 2, . . . , n + r},
are possibly nonlinear functions of the states and gain
entries F i

jk(x), i ∈ {0, 1, . . . , q}, j ∈ {1, 2, . . . ,m}, k ∈
{1, 2, . . . , n}.
In order to determine gains F i(x), i ∈ {0, 1, . . . , q}, such
that the origin is asymptotically stable, (6) should be
written as follows:

˙̃x(t) =

[
0(q−2)n×n I(q−2)n 0(q−2)n×r

Ã1(x̃) Ã2(x̃) Ã3(x̃)

]
x̃(t)

+

[
0(q−2)n×m

B̃(x̃)

]
F̃ (x̃, F i

jk(x̃))x̃(t), (7)

where x̃ =
[
x̄1 x̄2 · · · x̄(q−1)n+r

]T
, Ã1(x̃) ∈ R(n+r)×n,

Ã2(x̃) ∈ R(n+r)×(q−2)n, Ã3(x̃) ∈ R(n+r)×r, and B̃(x̃) ∈
R(n+r)×m are matrices with known possibly nonlinear
entries, and F̃ (·) ∈ Rm×((q−1)n+r) is a possibly nonlinear
matrix function of the states and gain entries F i

jk(x̃),

i ∈ {0, 1, . . . , q}, j ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , n}. There
is, of course, an infinite number of such factorisations.

Let us define ũ ≡ F̃ (x̃, F i
jk(x̃))x̃. The sector nonlinearity

approach will be employed to find an exact polytopic
representation of the 4-tuple (Ã1(x̃), Ã2(x̃), Ã3(x̃), B̃(x̃))

within Ω̃, which is defined as a compact set in R(q−1)n+r

that includes the bounds induced by x ∈ Ω as well
as others for the additional states. Once this 4-tuple is
exactly rewritten as a convex sum of constant matrices,
a fictitious PDC-like control law ũ(t) = K̃(x̃)x̃(t) will be
designed such that the origin of (7) is guaranteed to be
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asymptotically stable. As a final step, gains F i
jk(x̃) of the

actual control law will be obtained from the equivalence
K̃(x̃) = F̃ (x̃, F i

jk(x̃)).

An equivalent polytopic representation of (7) within Ω̃ can
be systematically constructed via the sector nonlinearity
approach in González et al. (2017):

(1) create a list of different bounded non-constant terms

zi(x̃) ∈ [z0i , z
1
i ], i ∈ {1, 2, . . . , p}, in Ã1(x̃), Ã2(x̃),

Ã3(x̃), and B̃(x̃), by taking into account similar terms
in different entries 1 ,

(2) write each zi(x̃) as a convex sum of its bounds

zi(x̃) =
z1i −zi(x̃)

z1i −z0i︸ ︷︷ ︸
wi

0(x̃)

z0i +
zi(x̃)−z0i
z1i −z0i︸ ︷︷ ︸
wi

1(x̃)

z1i ,

with wi
0(x̃) + wi

1(x̃) = 1, wi
0(x̃), wi

1(x̃) ∈ [0, 1], i ∈
{1, 2, . . . , p} for every x̃ ∈ Ω̃,

(3) write the exact polytopic representation of (7) as:

˙̃x(t) =
∑
i∈Bp

wi(x̃)

([
0(q−2)n×n I(q−2)n 0(q−2)n×r

Ã1
i Ã2

i Ã3
i

]̃
x(t)

+

[
0(q−2)n×m

B̃i

]̃
u(t)

)
, (8)

where B = {0, 1}, i = (i1, i2, . . . , ip) ∈ Bp,

wi(x̃) = w1
i1

(x̃)w2
i2

(x̃) · · ·wp
ip

(x̃), Ã1
i = Ã1(x̃)|wi(x̃)=1,

Ã2
i = Ã2(x̃)|wi(x̃)=1, Ã3

i = Ã3(x̃)|wi(x̃)=1, and B̃i =

B̃(x̃)|wi(x̃)=1.

Consider the following fictitious PDC-like control law:

ũ(t) = K̃(x̃)x̃(t) =
∑
j∈Bp

wi(x̃)Kjx̃. (9)

Theorem 1. The origin of the system (7) with equivalent

polytopic representation (8) within Ω̃, under the control
law (9) is asymptotically stable if ∃X ∈R(q−1)n+r×(q−1)n+r,
Mj ∈ Rm×(q−1)n+r, j ∈ Bp, of suitable dimensions, such
that the LMIs X = XT > 0 and∑

(i,j)∈P(k,l)

([
0(q−2)n×n I(q−2)n 0(q−2)n×r

Ã1
i Ã2

i Ã3
i

]
X

+

[
0(q−2)n×m

B̃i

]
Mj+(∗)

)
< 0, (10)

hold for all k, l ∈ Bp, with P(k, l) being the set of indexes
(i, j) of all products wiwj which are algebraically similar
to wkwl. The gains are given by Kj = MjX

−1, j ∈ Bp.
Moreover, any trajectory x̃(t) starting in the outermost

Lyapunov level set {x̃ : V (x̃) ≤ κ} ⊂ Ω̃, κ > 0, goes to
zero as time goes to infinity.

Proof. Considering the quadratic Lyapunov function can-
didate V (x̃) = x̃TPx̃, with P = X−1 = PT > 0, we have

that V̇ (x̃) = 2x̃TP ˙̃x, which is negative-definite if (omitting
arguments when convenient)

1 Avoiding redundancy in the list of nonlinearities helps associating
vertices of the resulting polytope, thus producing more relaxed LMI
results (Arceo et al., 2018).

P
∑

i,j∈Bp

wiwj

([
0(q−2)n×n I(q−2)n 0(q−2)n×r

Ã1
i Ã2

i Ã3
i

]

+

[
0(q−2)n×m

B̃i

]
Kj

)
+ (∗)<0.

The desired LMI conditions follow from pre- and post-
multiplication by X = P−1, renaming of products KjX
as Mj, and dropping of the products of convex functions
wi(x̃)wj(x̃) by associating similar terms.

Once the convex sum K̃(x̃) is obtained by means of
the previous theorem, the gain entries F i

jk(x̃) of the
actual control law will be obtained from the equation∑

j∈Bp wi(x̃)Kj = F̃ (x̃, F i
jk(x̃)).

4. EXAMPLE

Consider the 3rd-order nonlinear system[
ẋ1(t)
ẋ2(t)
ẋ3(t)

]
=

[−10 10 0
28 −1 −x1
0 x1 −8/3

][
x1(t)
x2(t)
x3(t)

]
+

[
1
1
1

]
u(t) (11)

with the control law (4) considering q = 2,

u(t) = F 0(x)x(t) + F 1(x)ẋ(t) + F 2(x)ẍ(t). (12)

Once (12) is substituted in (11), the closed-loop system
can be rewritten in the singular form (5) (arguments are
omitted for brevity):

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 F 2

11 F
2
12 F

2
13

0 0 0 F 2
11 F

2
12 F

2
13

0 0 0 F 2
11 F

2
12 F

2
13




˙̄x1
˙̄x2
˙̄x3
˙̄x4
˙̄x5
˙̄x6

=


0 0
0 0
0 0

10− F 0
11 −10− F 0

12

−28− F 0
11 1− F 0

12

−F 0
11 −x̄1 − F 0

12

0 1 0 0
0 0 1 0
0 0 0 1
−F 0

13 1− F 1
11 −F 1

12 −F 1
13

x̄1 − F 0
13 −F 1

11 1− F 1
12 −F 1

13

8/3− F 0
13 −F 1

11 −F 1
12 1− F 1

13




x̄1
x̄2
x̄3
x̄4
x̄5
x̄6

 , (13)

where F i
jk, i ∈ {0, 1, 2}, j = 1, k ∈ {1, 2, 3}, are the (j, k)-

entries of gain F i(x), x̄i = xi, x̄i+3 = ẋi, i ∈ {1, 2, 3}.

Since rank([1 1 1]
T
F 2(x)) = 1 for a 3rd-order system,

there are 3 − 1 = 2 algebraic restrictions. Applying the
Pantelides algorithm in section 2, the last 3 equations allow
solving the following states:

x̄5 = 38x̄1 − 11x̄2 + x̄4 − x̄1x̄3,
x̄6 = 10x̄1 − 10x̄2 − (8/3)x̄3 + x̄4 + x̄1x̄2,

whose derivatives are

˙̄x5 = ˙̄x4−418x̄1+121x̄2+27x̄4+10x̄1x̄2+(41/3)x̄1x̄3

−x̄1x̄4−x̄3x̄4−x̄21x̄2−10x̄21,

˙̄x6 = ˙̄x4−(1220/3)x̄1+(410/3)x̄2+(64/9)x̄3−(8/3)x̄4

−(41/3)x̄1x̄2+10x̄1x̄3+x̄1x̄4+x̄2x̄4−x̄21x̄3+38x̄21.

Then, from any of the last 3 equations in (13), it is possible
to solve the single missing dynamic ˙̄x4. Thus, defining
x̃i = x̄i, i ∈ {1, 2, 3, 4}, the resulting ODE system can

be written as (7). Since all terms in ˙̃x4 depend on some
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gain F i
jk, it is necessary to group them in F̃ (x̃, F i

jk(x̃));
thus, we have:

˙̃x1
˙̃x2
˙̃x3
˙̃x4

=
 0 0 0 1

38 −11 −x̃1 1
10 −10 + x̃1 −8/3 1
0 0 0 0


x̃1x̃2x̃3
x̃4

+

0
0
0
1

F̃ (x̃, F i
jk(x̃))

x̃1x̃2x̃3
x̃4

,
where no matrix Ã2(x̃) nor the first row of blocks are
present because q = 2; the remaining matrices have the
following dimensions: Ã1(x̃) ∈ R4×3, Ã3(x̃) ∈ R4×1, and

B̃(x̃) ∈ R4×1 with F̃ (·) ∈ R1×4.

Explicit expressions in F̃ (x̃, F i
jk(x̃)) are logically too large;

yet, for the sake of illustration, its first entry is provided:
F̃1 = −(9F 0

11 + 342F 1
12 + 90F 1

13 − 3762F 2
12 − 3660F 2

13 −
9F 1

12x̃3 + 9F 1
13x̃2 − 90F 2

12x̃1 + 90F 2
12x̃2 + 342F 2

13x̃1 +
123F 2

12x̃3 − 123F 2
13x̃2 − 9F 2

12x̃4 + 90F 2
13x̃3 + 9F 2

13x̃4 −
9F 2

12x̃1x̃2 − 9F 2
13x̃1x̃3 − 90)/(9F 2

11 + 9F 2
12 + 9F 2

13).

Considering the non-constant term z = x̃1 and its bounds
z ∈ [−20, 20], an exact polytopic representation is ob-

tained with x̃ = [x̃1 x̃2 x̃3 x̃4]
T

and ũ = F̃ (x̃, F i
jk(x̃))x̃:

˙̃x(t) =

1∑
i=0

w1
i (x̃)

([
Ã1

i Ã
3
i

]
x̃(t) +B̃iũ(t)

)
,

where w1
0 = 0.5−x̃1/40, w1

1 =1−w1
0, B̃0 =B̃1 = [0 0 0 1]T ,

Ã1
0 =

 0 0 0
38 −11 20
10 −30 −8/3
0 0 0

, Ã1
1 =

 0 0 0
38 −11 −20
10 10 −8/3
0 0 0

, Ã3
0 =Ã3

1 =

1
1
1
0

,
From LMI conditions (10), K1 = 103[6.90 − 0.02 −
0.95 0.15] and K2 = 103[6.22 0.05 − 0.78 0.13] are ob-
tained, producing the fictitious control law (9) ũ(t) =(
w1

0(x̃)K1 + w1
1(x̃)K2

)
x̃(t) = K̃(x̃)x̃(t). The last step is to

recover the gains F i
jk for (12) from F̃ (x̃, F i

jk(x̃)) = K̃(x̃).

After simplifications, the following is obtained F 0
11 =

22.647x1 + 3.666x2− 23.666x3 + x1x2 + x1x3− 18830.795,
F 0
12 = −4.818x1 − 308.4, F 0

13 = 2587.078 − 12.279x1,
F 1
11 = 1.072x1 − x2 + x3 − 441.048, F 1

12 = F 1
13 = 0,

F 2
11 = F 2

12 = F 2
13 = 1.

Fig. 1 (left) shows the state evolution of system (11)
under the control law (12) (right) for initial conditions
x(0) = [20 −2 10].
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Fig. 1. States evolution (left); Control signal (right).

5. CONCLUSIONS

A methodology for high-order state-derivative controller
design has been presented; it is based on inducing a sin-
gular system by feeding back q derivatives of the state
vector; this model allows transforming the original nonlin-
ear system into a new ODE one by means of the Pantelides
algorithm. An auxiliary control law has been designed for
the latter system, based on which the real control law is
obtained via LMI conditions.
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