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Abstract: This paper is concerned with kernel-based system identification. An approach to
estimate a parametric model with given structure is shown, which approximates the step
response of the target system. It is composed of two parts. First, taking account of the step
response, an IIR model is estimated via kernel regularization with an appropriate input. Second,
a parametric model with given structure is estimated from the obtained impulse response. A
numerical example is given to demonstrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Since the pioneering work by Pillonetto and De Nico-
lao (2010), tremendous attention has been paid to the
kernel based approach in system identification (see e.g.,
Pillonetto et al. (2018) and the references there in).
The approach enables us to obtain fairly good nonpara-
metric models (i.e., IIR models) from small size noisy
I/O data. On the other hand, in many control system
design/analysis, compact parametric models would be nec-
essary. Though there are so many identification methods
to estimate parametric models, one major drawback there
is that the true system is assumed to belong to the given
model class. This assumption may not be valid in many
practical cases. Consequently, the obtained parametric
model could behave quite differently from the true system.
In fact, this is one important motivation why the kernel
based approach focuses on nonparametric models.

One approach has been proposed to obtain a parametric
model based on the estimate of impulse response by the
Kernel regularization by J. Wågberg et al. (2018). Their
method is robust against both small noisy data and over
parametrization. This robustness is important. However,
their numerical examples did not demonstrate enough this
point (especially for the lower order models). Furthermore,
though they focused on impulse response only, the goal of
modeling depends on the designer. Sometimes, accuracy
of the step response of the model is more important than
that of the impulse response. Therefore, it is necessary to
cope with this type of requirement.

Based on the above observations, this paper proposes
a method to identify a parametric model with given
structure whose step response approximates that of the
target system well. Furthermore, a numerical example is
given to demonstrate its effectiveness.

⋆ This paper is partly supported by JSPS KAKENHI No.
JP7H03281.

2. PROBLEM DESCRIPTION

2.1 System Description

Consider the linear shift-invariant discrete-time SISO sys-
tem described by

y(t) = G⋆(q)u(t) + e(t), t = 1, . . . , N (1)

where y(t) ∈ R is the observed output, u(t) ∈ R is the
input, e(t) ∈ R is a zero mean white noise with variance λ,
and G⋆(q) is the transfer function with the shift operator
q which can be described as

G⋆(q) =

∞∑
k=0

g⋆(k)q
−k (2)

where g⋆(k) is the impulse response at time k. Suppose
u(t) = 0 holds for any t ≤ 0, then I/O relation of the
system is given by

y = Ug⋆ + e (3)

y =


y(1)
y(2)
...

y(N)

 , U =


u(1) 0 · · · 0

u(2) u(1)
. . .

...
...

...
. . . 0

u(N) u(N − 1) · · · u(1)

 (4)

g⋆ =


g⋆(0)
g⋆(1)
...

g⋆(N − 1)

 (5)

where e = [e(1) e(2) · · · e(N)]
⊤

denotes the noise vector
with E[e] = 0N and E[ee⊤] = λIN .

2.2 Model class

Suppose the degrees of the numerator and the denomina-
tor, nb and nf , are determined by the designer in advance,
and we seek the parametric model of the form
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Gθ(q) =
b0 + b1q

−1 + · · ·+ bnb
q−nb

1 + f1q−1 + · · ·+ fnf
q−nf

(6)

where θ =
[
b0 b1 · · · bnb

f1 f2 · · · fnf

]⊤ ∈ Rnb+nf is the
parameter vector to be found from the I/O data

D = {(u(1), y(1)), (u(2), y(2)), · · · , (u(N), y(N))}
of the target system.

For later use, denote the set of all parametric models by

Gθ :=
{
Gθ(q) | θ ∈ Rnb+nf

}
(7)

2.3 Problem Statement

Now we consider the criterion

J⋆ = ∥g⋆ − gθ∥2W := (g⋆ − gθ)
⊤W (g⋆ − gθ) (8)

where gθ = [gθ(0) · · · gθ(N − 1)]⊤ denotes the impulse
response of the system whose transfer function is Gθ(q) ∈
Gθ and W ∈ RN×N is the given symmetric matrix. One
example of W is C⊤C with

C =


1 0 · · · 0
...
. . .

. . .
...

...
. . . 0

1 · · · · · · 1


In this case J⋆ means the squared Euclidean norm of the
difference of step responses between the true plant G⋆ and
its model Gθ. For simplicity, here we consider this case
only.

As already pointed out by Fujimoto et al. (2017), the
choice of input sequence plays a crucial role to minimize
J⋆. Hence, we should find an appropriate input sequence
u := [u(1), u(2), · · · , u(N)]⊤ as well as the parametric
model for this purpose. We assume that u should belong
to the available input set given by

U = {u | uℓ ≤ u(t) ≤ uu for t = 1, 2, · · · , N} (9)

where uℓ ∈ R and uu ∈ R are the given lower and upper
bounds of the available input, respectively, at each time
step. Now the problem is stated as follows:

Problem 1Given λ,W , U and Gθ, find u ∈ U andGθ ∈ Gθ

such that J⋆ is minimized.

Namely, we are going to find both the input sequence and
the parametric model so that the resultant step response
is as close as possible to the true one.

Note that true system transfer function may not belong to
the given system class Gθ. More importantly, the response
of the obtained model is expected to mimic that of the
true system even if the system order is different.

3. PROPOSED METHOD

3.1 Estimate of nonparmetric ḡ with optimal input

According to Fujimoto and Sugie(2017) we first find u∗ ∈
U and the nonparametric model ḡ := [ḡ(0) · · · ḡ(N −
1)]⊤ ∈ RN .

In the kernel regularized approach, we regard that p(g⋆) ∼
N (0,K) holds, where p(·) is the probability density func-
tion and N (·, ··) denotes the normal distribution with

mean (·) and covariance matrix (··) ∈ RN×N . K is called
the kernel matrix and it may be determined from a pre-
liminary experiment. Then, the posterior distribution of
g⋆ becomes

p(g⋆ | y) ∼ N (g, K̂)

where

K̂ =
(
λ−1(U)⊤U +K−1

)−1
, g = λ−1K̂U⊤y.

The above g is the estimate of g⋆ based on D.

According to Fujimoto and Sugie (2017), the input u
which minimizes

∥g⋆ − g∥2W p(g⋆|y)p(y),
is equal to u∗ which minimizes

J(u) = Tr

(
W

(
K−1 +

1

λ
U⊤U

)−1
)
. (10)

By using a projected gradient mehod, we can get a local
minimal point u∗ = [u∗(1) · · ·u∗(N)]⊤ ∈ RN . Then, the
corresponding estimate ḡ is given by

ḡ = λ−1
(
λ−1(U∗)⊤U∗ +K−1

)−1
(U∗)⊤y∗ (11)

y∗ = U∗g⋆ + e (12)

U∗ =


u∗(1) 0 · · · 0

u∗(2) u∗(1)
. . .

...
...

...
. . . 0

u∗(N) u∗(N − 1) · · · u∗(1)

 (13)

3.2 Estimate of parametric Gθ(q)

Once the input u∗ and its corresponding output y∗ are
obtained, we estimate Gθ(q) based on these I/O data. In
stead of minimizing

J⋆(θ) = ∥gθ − g⋆∥2W , (14)

we try to minimize its expectation by regarding g⋆ as a
random variable same as in the previous subsection. As a
result, we determine θ by

θ̂ = arg min ∥gθ − ḡ∥2W (15)

4. SIMULATION

This section shows the effectiveness of the proposed
method through a numerical example.

Suppose that true system is given by the transfer function
(nf = 3,nb = 2) below.

G⋆(q) =
3.871q2 − 4.968q + 2.549

q3 − 1.507q2 + 0.3258q + 0.2506
(16)

The data length N and the input amplitude constraint
(uℓ, uu) are given by

N = 80 (17)

ul = −3, uu = 3 (18)

As a preliminary experiment, we inject a white binary
input sequence uw ∈ RN and observe the corresponding
output yw ∈ RN . Choosing a Tuned Correlated Kernel of
the form

Ki,j = αβmax(i,j), α > 0, 0 < β < 1

we determine these hyper parameters (α, β) by empirical
Bayes based on the I/O data Dw := {uw, yw}.
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Fig. 1. Step responses in case of nf = 2, (Proposed
Method)
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Fig. 2. Step responses in case of nf = 2, (Existing Method)

Then calculate the optimal input u∗ and the corresponding
parameter θ by exploiting the constrained Particle Swarm
Optimization (see Maruta et al. (2013)). We ran the
simulation 50 times with different noises of variance λ = 1.

First, we set nf = 2 (with nb = nf − 1), which is lower
than the true degree. Fig. 1 shows 50 step responses of the
estimated model by the proposed method. They are shown
by the red broken lines. The true response is shown by the
black line, and the step responses estimated by ḡ are shown
by the blue broken lines. The gray shaded area shows
the noise amplitude. For comparison purpose, the results
based on Dw with the method by J. Wågberg et al. (2018)
are given by Fig. 2 . These two figures clearly demonstrate
the effectiveness of the proposed method. Even in the case
of lower order model, the proposed method provides us a
fairly good model from the viewpoint of step responses.

Second, we set nf = 4 (with nb = nf − 1), which is
higher than the true degree. The results corresponding
to the proposed method is shown in Fig. 3, and the
those corresponding to the existing one is shown in Fig.
4. In this case, the existing method yields better results
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Fig. 3. Step responses in case of nf = 4 (Proposed Method)
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Fig. 4. Step responses in case of nf = 4 (Existing Method)

compared to the lower degree case. However, the variance
of step responses is still big. On the contrary, the proposed
method exhibits much better results.

These results demonstrate that the proposed method pro-
vides fairly accurate step responses even if the system
order is different from the true one. This robustness seems
to be crucial in practice when we estimate the parametric
models.

5. CONCLUSION

This paper gives an approach for identification of para-
metric model, which has two important properties. One is
that the obtained model is robust against the system order
mismatch, and the other is that the method reflects the
modeling purpose (such as accuracy of the step response)
more directly. For the first property, the kernel regularized
method is utilized, and for the second property, the input
is chosen according to the purpose.

REFERENCES

Pillonetto, G., and De Nicolao, G. (2010). A new kernel-
based approach for linear system identification, Auto-

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020



matica, 46-1, 81/93
Pillonetto,G., Dinuzzo, F., Chen,T., De Nicolao,G., and

Ljung, L. (2014). Kernel methods in system identi-
fication, machine learning and function estimation: A
survey, Automatica, 50-3, 657/682
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