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Abstract: Design of distributed energy management systems composed of several agents is important
for realizing smart cities. Demand response for saving the power consumption is also important. In this
paper, we propose a design method of distributed energy management systems with real-time demand
response. Here, we use ADMM (Alternating Direction Method of Multipliers). In the proposed method,
demand response is performed in real-time, based on the difference between the planned demand and
the actual value. Furthermore, utilizing the blockchain is also discussed.
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1. INTRODUCTION

As one of control technologies for a smart city, design of
distributed energy management systems (EMSs) is one of the
important problems. A distributed EMS is composed of several
agents such as factories and buildings (see, e.g., Miyamoto et al.
(2016a,b)). By transactions between agents, the surplus power
may be generated. As a result, the power traded with an external
district can be controlled.

On the other hand, demand response (DR) is well known as
one of the key technologies in EMSs. DR is defined as the
changes in electricity usage of end-use consumers by changing
the electricity price, and so on. There have been many results
from several viewpoints. In e.g., Conejo et al. (2010); Miyazaki
et al. (2019), the future demand is re-scheduled based on the
error of the past planned demand and the past actual power con-
sumption, based on model predictive control. For a distributed
EMS, it is important to develop an optimization method for re-
scheduling considering demand response. However, only few
results have been obtained so far (see, e.g, Soares et al. (2013)).

In this paper, as an extension of Miyazaki et al. (2019), we
consider both day-ahead scheduling and re-scheduling for a
distributed EMS considering both electrical energy and thermal
energy. The error of the past planned demand and the past actual
value is distributed to the future demand. We suppose that
the difference between the planned demand and the modified
demand is compensated by DR. In both day-ahead schedul-
ing and re-scheduling, we use ADMM (Alternating Direction
Method of Multipliers), which is one of the powerful methods
in distributed optimization (Boyd et al. (2011)). Furthermore,
we also discuss the effectiveness of utilizing the Blockchain
technology. The blockchain is compatible with distributed opti-
mization (see, e.g., Munsing et al. (2017); Ogawa et al. (2019)).
By a numerical example, we demonstrate the proposed method.
We also discuss the adverse effect of tampering the past ac-
tual value, and we suggest the importance of introducing a
blockchain.
⋆ This work was supported by JSPS KAKENHI Grant Numbers JP17K06486,
JP19H02157, JP19H02158.

Notation: Let R denote the set of real numbers. For the finite
set A, let |A| denote the number of elements in A. Let 0m×n
denote the m× n zero matrix. For the vector x, let x⊤ denote the
transpose of x. For the vector x, let ∥x∥2 denote the Euclidean
norm of x. For the vector x, let x(i) denote the i-th element of x.

2. EXCHANGE PROBLEM AND ADMM

In this section, after the exchange problem (EP) is explained,
ADMM is explained.

Let I = {1, 2, . . . , n} denote the set of agents. Let xi, Xi, and fi :
Xi → R denote the decision variable vector, the domain of xi,
and the convex objective function, respectively. LetM denote
the finite set of markets. Let x(m j)

i , j ∈ {1, 2, . . . , |M|} denote the
scalar decision variable for the agent i in the market m j ∈ M.
The vector xMi is defined by xMi := [x(m1)

i x(m2)
i · · · x(m|M|)

i ]⊤.
Then, EP is given as follows: Find xi, i ∈ I minimizing∑

i∈I fi(xi) subject to xi ∈ Xi, i ∈ I and∑
i∈I

xMi = 0|M|×1. (1)

In EP, a sum of objective functions for agents is minimized
under the condition that demand and supply are balanced in all
markets. For the market m ∈ M, the agent i is called a supplier
if x(m)

i < 0, and the agent i is called a consumer if x(m)
i > 0.

Next, the Lagrange function for EP is given by L(x, α) =∑
i fi(xi) + α⊤

∑
i xMi , where α is a Lagrange multiplier, and

corresponds to a shadow price in the market. For each agent,
this Lagrange function can be decomposed to Li(xi, α) = fi(xi)+
α⊤xMi , i ∈ I. In the case of using ADMM for EP, xi and α are
updated as follows:

xi(k + 1) B arg min
xi

(
Li(xi, α(k)) +

ρ

2
∥xMi − xMi (k)

+ xM(k)∥22
)
, i ∈ I,

α(k + 1) B α(k) + ρ xM(k + 1) (2)
where k ∈ {0, 1, 2, . . . } is the number of updates (turn), ρ is a
penalty parameter, and xM(k) =

∑
i xMi (k)/n. See, e.g., Boyd et

al. (2011); Miyamoto et al. (2016a) for further details.
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In distributed optimization using ADMM, the whole system
consists of an aggregator and n agents. The aggregator presents
the shadow price α and the mean value x̄ to each agent, and
collects xi(k + 1) obtained by local optimization in each agent.
In addition, α is updated using xi(k + 1). In each agent, the
individual local optimization problem is solved. The penalty
parameter ρmust be shared in the aggregator and agents. Fully-
distributed ADMM has been proposed in e.g., Matsuda et al.
(2019). However, it is desirable that an aggregator is introduced
in the case of imposing equality constraints such as (1).

3. DISTRIBUTED ENERGY MANAGEMENT SYSTEMS

In this section, we formulate a distributed EMS. A mathe-
matical model of a distributed EMS in this paper is based on
Miyamoto et al. (2016a,b). Consider a special district that is
composed of factory agents and building agents. In this section,
we consider only a single period. A factory agent has energy
conversion equipments such as boilers and turbines, and can
sell excess energy to other agents. In a building agent, to satisfy
its demand, energy from inside and outside of the district is
purchased, and energy conversion equipments are operated.
Here, there are two markets, i.e., an electricity market and a
heat market.

First, we explain a factory agent. Suppose that a factory agent
has a gas cogeneration system (GT) and a gas boiler (BA). The
optimization problem for a factory agent is given as follows:

minimize αBE BE + αBGBG + αESEE + αHSHH (3)
subject to SEE ≤ 0, SHH ≤ 0, BE ≥ 0

BGGT ≥ 0, BGBA ≥ 0

0 ≤ PEGT ≤ aGTE BG 2
GT

+ bGTE BGGT + cGTE (4)

0 ≤ PHGT ≤ aGTH BG 2
GT

+ bGTH BGGT + cGTH (5)

0 ≤ PHBA ≤ aBABG 2
BA

+ bBABGBA + cBA (6)
BE + PEGT + SEE = DE (7)
PHGT + PHBA + SHH = DH (8)
BG = BGGT + BGBA (9)

BGGT ≤ BGGT ≤ BGGT (10)

BGBA ≤ BGBA ≤ BGBA (11)

where the index for each factory agent is omitted. Meaning of
decision variables is given as follows:

• SEE, SHH: volumes of trading of electrical and thermal
energy from inside of the district (if a factory is a supplier,
then these are negetive),
• BE, BG: volumes of electrical and thermal energy pur-

chasing from outside of the district,
• BGGT, BGBA: input energy of each equipment,
• PEGT, PHGT, PHBA: volumes of electrical and thermal

energy generated by each equipment.

Meaning of constants is given as follows:

• αBE , αBG: unit price of electrical and thermal energy
purchasing from outside of district,
• αE, αH: unit price of electrical and thermal energy trading

inside of district,
• DE, DH: electrical and thermal demands,

• a•, b•, c•: coefficients of input-output properties of equip-
ments.

We remark here that xi, xMi , and α in Section 2 correspond to
[SEE SHH BE BG BGGT BGBA PEGT PHGT PHBA]⊤,
[SEE SHH]⊤, and [αE αH]⊤, respectively. (3) represents the
energy cost, (4)–(6) represent input-output properties of equip-
ments (due to solver limitation, input-output properties are
represented by inequalities). (7)–(9) represent energy balances.
(10) and (11) represent constraints for input energy.

Next, we explain a building agent. Suppose that a building agent
has a gas boiler (BA). The optimization problem for a factory
agent is given as follows:

minimize αBE BE + αBGBG + αEBEE + αHBHH

subject to BEE ≥ 0, BHH ≥ 0, BE ≥ 0, BGBA ≥ 0

0 ≤ PHBA ≤ aBABG 2
BA + bBABGBA + cBA

BE + BEE = DE, PHBA + BHH = DH
BG = BGBA

BGBA ≤ BGBA ≤ BGBA

where the index for each building agent is omitted. Meaning of
decision variables is given as follows:

• BEE，BHH: volumes of electrical and thermal energy
purchasing from inside of the district (If a building agent
is a consumer, these are positive).

Other decision variables and constants are the same as those
of a factory agent. We remark here that xi and xMi in Section
2 correspond to [BEE BHH BE BG BGBA PHBA]⊤ and
[BEE BHH]⊤, respectively.

Finally, since we consider two markets, the equality constraint
(1) in Section 2 is given by the following two equality con-
straints:

∑NF
i=1 SEi

E +
∑NB

i=1 BEi
E = 0 and

∑NF
i=1 SHi

H +
∑NB

i=1 BHi
H =

0, where NF and NB are the number of factory and building
agents, respectively, and i is the index for agents.

4. PROPOSED METHOD

4.1 Outline

First, we explain the outline of the proposed method. We
suppose that hourly electrical and thermal demands planned in
the previous day are given. Then, the optimization problem is
solved every hour. Since the planned demand and the actual
consumption are different, the difference between these values
must be compensated in the future. In this paper, we consider
realizing this compensation by DR. Based on the difference
occurred at the current time, we modify the demand in the
future. By this method, the hourly demand is changed, and it
is expected that the total consumption in one day is almost the
same as the total demand in one day.

4.2 Proposed Procedure

Let DEi(t) and DHi(t), i = 1, 2, . . . ,NF + NB, t = 0, 1, 2, . . . , 23
denote hourly electrical and thermal demands planned in the
previous day, respectively. We define DEi

total :=
∑23

t=0 DEi(t)
and DHi

total :=
∑23

t=0 DHi(t). Let DEi
a(t) and DHi

a(t), i =
1, 2, . . . ,NF + NB, t = 0, 1, 2, . . . , 23 denote hourly electrical
consumption and hourly thermal consumption, respectively.
We also define the error between the planned demand and
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the actual consumption as follows: ei
E(t) := DEi(t) − DEi

a(t)
and ei

H(t) := DHi(t) − DHi
a(t). The scalar l(t) is defined by

l(0) = l(1) = · · · = l(23 − l) = l, l(23 − l + m) = l − m,
m = 1, 2, . . . , l, where l ∈ [0, 23] is a given integer. In addition,
γ j(t) ≥ 0, j = 0, 1, 2, . . . , l(t) are given parameters that satisfy∑l(t)

j=0 γ j(t) = 1. In the case of t = 23, two conditions: l(23) = 0
and γ0(23) = 1 hold.

Under these preparations, we propose the procedure for opti-
mization using DR as follows.

Proposed Procedure:

Step 0: Give DEi(t), DHi(t), l(t), and γ j(t), t = 0, 1, 2, . . . , 23.
Set t = 0.

Step 1: Solve the optimization problem EP using ADMM.

Step 2: Apply the computation result to each agent. Collect
DEi

a(t) and DHi
a(t).

Step 3: Modify DEi(t+1+ j) and DHi(t+1+ j), j = 0, 1, . . . , l(t)
to

DEi(t + 1 + j) := DEi(t + 1 + j) + γ j(t)ei
E(t), (12)

DHi(t + 1 + j) := DHi(t + 1 + j) + γ j(t)ei
H(t). (13)

Step 4: Set t := t+1. If t = 24, then the procedure is terminated.
Otherwise, return to Step 1.

In the above procedure, the errors ei
E(t) and ei

H(t) are dis-
tributed to the future demand depending on l(t) and γ j(t) given
in advance. Using this procedure, the following relations are
achieved:

23∑
t=0

DEi
a(t) ≈ DEi

total,

23∑
t=0

DHi
a(t) ≈ DHi

total. (14)

4.3 Discussion on Implementation Using Blockchain

When EP is solved using ADMM, utilizing the Blockchain
technology provides some benefits. The blockchain is one of
the open and distributed ledgers. In the blockchain, a peer-
to-peer network, which adheres to a protocol for inter-node
communication and validates new blocks, manages typically.
The blockchain has been used in a smart grid (see, e.g., Noor et
al. (2018)), and is compatible with a distributed EMS.

Using the blockchain, information managed by the aggregator
in ADMM is shared by all agents in the safe form that tamper
is difficult. Hence, we do not need the aggregator. On the
other hand, the computation time is increased by introducing
a blockchain (see Ogawa et al. (2019) for further details). It is
necessary to consider the trade-off between the safety and the
computation time.

5. NUMERICAL EXAMPLE

In this section, a numerical example is presented. We consider
solving the optimization problem EP for the EMS in Section
3 with real-time demand response. Consider the EMS that is
composed of two factory agents (F1, F2) and three building
agents (B1, B2, B3). The unit energy prices from outside from
the district is given by αBE = 10.39[103JPY/MWh] and αBG =
2.86[103JPY/102m3], respectively. Table 1 shows the param-
eters of each agent. Fig. 1 and Fig. 2 show hourly electrical

Table. 1. Parameters.
F1 F2 B1 B2 B3

aGTE [-] −0.001 −0.002 - - -
bGTE [-] 0.52 0.51 - - -
cGTE [-] −2.0 −2.5 - - -
aGTH [-] −0.001 −0.007 - - -
bGTH [-] 0.78 1.3 - - -
cGTH [-] −3.3 −6.0 - - -
BGGT [102m3] 46.4 27.5 - - -
BGGT [102m3] 5.83 5.55 - - -
aBA [-] −0.4 −0.4 −0.5 −0.45 −0.4
bBA [-] 5.1 4.95 5.0 4.9 4.95
cBA [-] −1.0 −1.0 −0.5 −0.5 −1.0
BGGT [102m3] 2.75 1.36 1.84 1.63 2.18
BGGT [102m3] 0.405 0.23 0.12 0.14 0.18

Fig. 1. Electrical demand planned in the previous day.

Fig. 2. Thermal demand planned in the previous day.

demand and hourly thermal demand planned in the previous
day, respectively. The parameters and energy demands are gen-
erated based on the references Miyamoto et al. (2016a,b). In
computation, we use Python/CVXpy.

The parameter ρ in ADMM is set to 0.1. If both
∑

i∈I xMi (k) < ε
and ρ(k + 1)(xM(k + 1) − xM(k)) < ε are satisfied, then the
computation procedure is terminated. In this example, we set
ε = 0.005. In addition, the parameter l in the proposed method
is set to 0. The initial values of αE and αH are given by zero.

We explain the computation results. In this numerical example,
we define DEi

a(t) and DHi
a(t) as DEi

a(t) := DEi(t) + v(t)
and DHi

a(t) := DHi(t) + w(t), respectively. where v(t) and
w(t) are noises. First, we validate the effectiveness of the
proposed method. Fig. 3 and Fig. 4 show hourly electrical
consumption DEi

a(t) and hourly thermal consumption DHi
a(t)

with and without the proposed method, respectively. Table
2 and Table 3 show the total demand and consumption of
electrical energy and thermal energy in one day. From these
results, we see that two relations (14) are achieved by using the
proposed method.

Next, we comment about the effects of tampering and advan-
tages of implementing the proposed method using a blockchain.
We suppose here that (12) and (13) are tampered as follows:
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Fig. 3. Electrical consumption. Solid line: Using the proposed
method. Dotted line: Not using the proposed method.

Fig. 4. Thermal consumption. Solid line: Using the proposed
method. Dotted line: Not using the proposed method.

Table. 2. The total demand and consumption of
electrical energy in one day.

F1 F2 B1 B2 B3
DEi

total 185.9 154.4 61.2 170.5 109.5∑23
t=0 DEi

a(t) with DR 185.9 154.6 61.2 170.8 109.7∑23
t=0 DEi

a(t) without DR 190.4 158.6 62.6 174.6 112.8

.
Table. 3. The total demand and consumption of

thermal energy in one day.

F1 F2 B1 B2 B3
DHi

total 428.0 331.1 81.0 436.3 193.1∑23
t=0 DHi

a(t) with DR 428.4 331.5 81.0 437.5 193.1∑23
t=0 DHi

a(t) without DR 437.5 340.2 83.2 446.0 197.4

DEi(t + 1 + j) := DEi(t + 1 + j) − γ j(t)ei
E(t),

DHi(t + 1 + j) := DHi(t + 1 + j) − γ j(t)ei
H(t).

Fig. 5 and Fig. 6 show hourly electrical consumption DEi
a(t)

and hourly thermal consumption DHi
a(t) in the normal case

and in the case of tampering. From these figures, we see that
tampering may cause excessive energy consumption. Using the
blockchain, we can prevent such cases of tampering.

6. CONCLUSION

In this paper, we considered an ADMM-optimization method
for a distributed EMS considering both electrical energy and
thermal energy. We supposed that the difference between the
planned demand and the modified demand is compensated by
DR. The effectiveness of the proposed method was presented
by a numerical example.

In future work, we will consider utilizing a blockchain based
on our previous method (Ogawa et al. (2019)).

The authors would like to thank Dr. Toshiyuki Miyamoto,
Osaka University for fruitful discussions.

Fig. 5. Electrical consumption. Solid line: The normal case.
Dashed line: The case of tampering.

Fig. 6. Thermal consumption. Solid line: The normal case.
Dashed line: The case of tampering.
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