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Abstract: In contrast to the unconstrained case, there is no closed-form solution to constrained
optimal control problems of linear systems under additive stochastic noise. Stochastic model
predictive control (SMPC) is an approximate solution strategy for such problems, in which a
simplified problem is repeatedly solved over a reduced prediction horizon. In this contribution,
we compare two forms of feedback in SMPC formulations in terms of their closed-loop
performance, as well as their conservatism regarding constraint satisfaction. First, we consider a
direct feedback formulation, which corresponds to the typical implementation of SMPC schemes.
This formulation aims to satisfy constraints with respect to the predicted state distribution
conditioned on the current measured state at each time step during the receding horizon
control. The second, denoted indirect feedback, introduces feedback through the cost only, and
instead considers constraints by introducing a suitable virtual or nominal state. This results
in a linear evolution of a closed-loop error state which can be used for constraint tightening,
providing closed-loop constraint satisfaction. In numerical examples, we demonstrate that this
can significantly improve performance, as well as reduce conservatism in closed-loop and that
it recovers the unconstrained optimal solution given by LQR control when it is feasible also for
the constrained optimal control problem.
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1. INTRODUCTION

Stochastic model predictive control (SMPC) can be viewed
as an approximate solution strategy for constrained
stochastic optimal control problems (SOCP), in which an
often simplified problem is repeatedly solved in receding
horizon fashion. This view raises questions regarding the
formulation of constraints in the SMPC optimization prob-
lem since one typically desires satisfaction of constraints
with respect to the closed-loop system, i.e. satisfaction of
the original constraints of the SOCP. Expressing this in the
formulation of the receding horizon SMPC problem, how-
ever, proves challenging and established SMPC approaches
typically aim to derive a sequence of control inputs or con-
trol laws such that the predicted uncertain state sequence
conditioned on the currently measured state satisfies the
chance constraints. We refer to this as a direct feedback
formulation, see for instance Lorenzen et al. (2017); Farina
et al. (2015); Hewing and Zeilinger (2018); Cannon et al.
(2011); Kouvaritakis et al. (2010); Korda et al. (2011).
While the prediction from the state measurement intro-
duces feedback in the receding horizon control formulation,
and is similar to nominal MPC, constraint satisfaction is
often hard to relate to the original SOCP, i.e. the closed-
loop control system, for instance due to feasibility issues.

For disturbances of bounded support, robust MPC tech-
niques can be used to ensure recursive feasibility, i.e. the
persistent satisfaction of constraints in prediction, from
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which (conservative) satisfaction of the original or closed-
loop constraints follows (Lorenzen et al., 2017; Kouvari-
takis et al., 2010). One way to address the conservatism
in these approaches was presented in Korda et al. (2014),
in which the constraint tightening is adapted over time to
adjust to a desirable level of satisfaction. For disturbances
of unbounded support, however, or if recursive feasibil-
ity cannot be guaranteed, guarantees with respect to the
closed-loop system or original SOCP are lost (Kouvaritakis
and Cannon, 2016; Farina et al., 2016); see also Hewing
and Zeilinger (2018) where guarantees are recovered under
additional assumptions. It can therefore be argued, that
the formulation of chance constraints conditioned on the
measured state is a main source of feasibility issues in
direct feedback SMPC, and can lead to conservatism and
decreased performance, even if recursively feasible.

This contribution investigates these issues by means of
comparison with an SMPC approach recently proposed
in Hewing et al. (2018), which uses an indirect feedback
formulation to express chance constraint with respect to
a closed-loop distribution, i.e. directly according to the
original SOCP. We present a re-formulation of this proce-
dure emphasizing this relationship, and facilitating further
investigations. We compare the formulation to an estab-
lished direct feedback variant, as well as the true optimal
solution of the original SOCP and show that—in contrast
to direct feedback—the indirect feedback variant recovers
this true optimal solution, while direct feedback results in
very conservative closed-loop trajectories, allowing essen-
tially no violation of constraints for any noise realization.
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2. PROBLEM STATEMENT

To illustrate the effect of the different feedback formu-
lations, we consider a particularly simple constrained
stochastic optimal control problem of linear time-invariant
systems under additive Gaussian noise

x(k+1) = Ax(k) +Bu(k) + w(k) (1)

w(k) ∼ N (0,Σw), i.i.d.

which are subject to a single half-space chance constraint

Pr(hTx(k) ≤ 1) > p, (2)

which needs to be satisfied at each time step individually
with a minimum specified probability p. While feasibility
is a central issue in stochastic MPC, we focus here on per-
formance and possible conservatism, and assume no input
constraints and that hTB 6= 0, such that the constraint
can be satisfied at all times from any measured state x(k).
The discussed MPC approaches are, however, applicable
to a wider range of use cases, see for instance Hewing and
Zeilinger (2018); Hewing et al. (2018), similarly also under
hard input constraints (Hewing and Zeilinger, 2020).

We consider a quadratic cost and large, but finite horizon
N̄ , resulting in the following constrained SOCP which we
aim to approximately solve using MPC techniques:

J̄∗ = min
Π

E

‖x(N̄)‖2P +

N̄−1∑
k=0

‖x(k)‖2Q + ‖u(k)‖2R


(3a)

s.t. x(k+1) = Ax(k) +Bu(k) + w(k), (3b)

u(k) = πk(x(0), . . . , x(k)), (3c)

w(k) ∼ N (0,Σw), i.i.d., (3d)

Pr(hTx(k) ≤ 1) > p, (3e)

x(0) = xinit, (3f)

where we optimize over a sequence of control laws Π =
{π0, . . . , πN̄−1} making use of the available information
up to that time step in form of state measurements.

Assumption 1. The terminal weight P is given by the
solution to the associated Riccati equation

P = ATPA−ATPB(R+BTPB)−1BTPA+Q.

Under this assumption, (3a) can also be interpreted as a
reformulation of an infinite horizon problem, given that
the unconstrained solution is feasible after time step N̄ .
In the unconstrained case, i.e. without constraint (3e), the
optimal solution to (3) is analytically available (Bertsekas,
2017) and given by the infinite horizon LQR controller
πLQR(x) = KLQRx with

KLQR = (R+BTPB)−1BTPA, (4)

which we use for comparison in Section 4. In the con-
strained case, however, there is no general closed-form
solution to (3) and approximate solution schemes are used,
for instance stochastic MPC.

3. APPROXIMATE SOLUTION BY STOCHASTIC
MODEL PREDICTIVE CONTROL

The approximations in deriving an SMPC approximation
to problem (3) are twofold: first, we consider an optimiza-
tion over a reduced horizon N � N̄ and use the controller
in receding horizon, i.e. implementing the first computed

control input and resolving the optimization problem at
the following time step. Note that the approximate solu-
tion to the SOCP (3) therefore consists of the receding
horizon control law, rather than the optimization problem
solved in the prediction of the MPC. We initialize the
predicted state sequence at each currently measured state

xi+1 = Axi +Bui + wi (5a)

x0 = x(k), (5b)

with wi ∼ N (0,Σw) i.i.d., such that xi represents the i-
step ahead prediction, conditioned on x(k). To emphasize
the difference, we use the index i for predictive quantities,
and parentheses k for the closed-loop.

Second, we decompose the system state into mean and
deviation x = x̄ + d in the prediction of the MPC opti-
mization problem, and restrict the considered controller
class by only optimizing over the mean input ū of

u = Kd+ ū

with predefined stabilizing gain K, which we also refer to
as the tube controller. This results in mean and deviation
prediction dynamics

x̄i+1 = Ax̄i +Būi, (6a)

di+1 = (A+BK)di + wi, (6b)

var(di) =

i∑
j=0

(A+BK)jΣw((A+BK)T)j . (6c)

Note that the deviation d is zero mean and independent
of the chosen mean control actions ū.

3.1 Direct Feedback Formulation

In a direct feedback formulation, we aim to enforce chance
constraints (2) for the prediction dynamics conditioned on
the measured state, i.e. for xi in (5a). Since

hTx̄i + φ−1(p)
√
hTvar(di)h ≤ 1

⇔Pr(hTxi ≤ 1) > p,

with φ−1 the quantile function of the standard Gaussian
distribution, we can reformulate the chance constraint
deterministically in terms of x̄. Using the fact that one can
equivalently optimize the cost at the mean for a quadratic
objective under this controller class, this results in the
direct feedback SMPC optimization problem

J∗d = min
Ū

‖x̄N‖2P +

¯N−1∑
k=0

‖x̄i‖2Q + ‖ūi‖2Q (7a)

s.t. x̄i+1 = Ax̄i +Būi, (7b)

hTx̄i ≤ 1− φ−1(p)
√
hTvar(di)h, (7c)

x̄0 = x(k) (7d)

where the applied input to system (1) is

u(k) = ū∗0.

Note that this therefore corresponds to nominal MPC on
tightened constraints, and that var(di) can be precom-
puted along (6c) for the constraint tightening.

Note also that constraint (7c) reformulates the chance
constraints for the predictive state distributions xi, i.e. it
provides open-loop constraint satisfaction. Given this sim-
ple setup without input constraints and only a single half-
space state constraint, we can then guarantee recursive
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feasible of (7) and (conservative) closed-loop constraint
satisfaction follows immediately, since

Pr(hTx(k+1) ≤ 1)

≥
∫

Pr(hTx(k+1) ≤ 1 |x(k))︸ ︷︷ ︸
≥p by (7c) and (7d)

px(k)(x)dx ≥ p.

where px(k) is the probability density of x(k). Note that,
in general, receding horizon controllers can lose closed-
loop chance constraint guarantees due to loss of feasibil-
ity (Hewing and Zeilinger, 2018). Furthermore, enforcing
these constraints in the prediction satisfies closed-loop
constraints conservatively, as we investigate in Section 4.
A way to address this is by indirect feedback SMPC for-
mulations, presented in the following.

3.2 Indirect Feedback Formulation

In an indirect feedback formulation, one does not enforce
constraints on each predicted state sequence conditioned
on the current state, but rather assures satisfaction di-
rectly for the closed-loop system, i.e. for x(k). This is
enabled by introducing a nominal or virtual state z(k)
and error e(k) = x(k) − z(k) and the following MPC
formulation

J∗ind = min
V

‖x̄N‖2P +

N−1∑
k=0

‖x̄i‖2Q + ‖ūi‖2Q (8a)

s.t. x̄i+1 = Ax̄i +Būi, (8b)

zi+1 = Azi +Bvi, (8c)

ēi = xi − zi, (8d)

ūi = Kēi + vi, (8e)

hTzi ≤ 1− φ−1(p)
√
hTvar(e(i+k))h, (8f)

x̄0 = x(k), z0 = z(k), (8g)

where the applied input to system (1) is

u(k) = Ke(k) + v(k), (9a)

v(k) = v∗0 (9b)

and we let our virtual system state z(k) evolve according
to v(k), leading to

z(k+1) = Az(k) +Bv(k), (10a)

e(k+1) = (A+BK)e(k) + w(k). (10b)

This results in the fact that we have a linear closed form
expression for the dynamics of the error in closed-loop, i.e.
the deviation of the state x(k) from the virtual state z(k),
which evolves autonomously from the chosen MPC control
input. Note that similar to the direct feedback case, we still
have x̄i as the predicted mean of the state conditioned on
the current measurement x(k), such that feedback through
state measurement x(k) is introduced to the system. Since
in general, the error e(k) is nonzero, we furthermore have
that the applied mean input in the prediction is given by

ūi = Kēi + vi,

where ē is the predicted mean error, conditioned on x(k).
As before, we can precompute the constraint tightening,
which is done now considering the closed-loop error distri-
bution, by computing var(e(i+ k)) beforehand.

In contrast to the direct feedback case, we therefore formu-
late constraints with respect to e(k) and due to the closed-
loop error dynamics (10b), enforcing constraint (8f) im-
mediately guarantees constraint satisfaction with respect

to x(k), i.e. in closed-loop (as opposed to in prediction).
To summarize, indirect feedback optimizes the objective
with respect to the predicted distribution of the state
conditioned on the current measurement x(k), whereas
constraints are satisfied with respect to the closed-loop
distribution of the error e(k), which is analytically avail-
able due to the choice of virtual state z(k). This ensures
recursive feasibility, even in the presence of additional
(input) constraints (Hewing et al., 2018), and optimizing
the cost w.r.t. xi introduces feedback, which also affects
the virtual state trajectory z(k).

4. NUMERICAL COMPARISON

In the following, we investigate performance and con-
servatism of the presented direct and indirect feedback
approach in a stochastic optimal control problem, which
we deliberately chose such that the unconstrained optimal
solution, i.e. the LQR solution, is feasible and therefore
represents the optimal solution also to the constrained
problem. We can therefore use this LQR solution as a
benchmark to compare the SMPC schemes.

4.1 Setup

We consider a specific SOCP problem of form (3) for a five
dimensional integrator chain system

A =


1 Ts T

2
s /2! T 3

s /3! T 4
s /4!

0 1 Ts T 2
s /2! T 3

s /3!
0 0 1 Ts T 2

s /2!
0 0 0 1 Ts
0 0 0 0 1

 , B =


T 5
s /5!
T 4
s /4!
T 3
s /3!
T 2
s /2!
Ts


with Ts = 0.1 subject to additive i.i.d. disturbances

w(k) ∼ N (0, 1.5BBT).

The quadratic objective is given with cost matrices

Q = diag([1, 2, 1, 1, 1]T), R = 0.1

and we consider a fixed initial condition

x(0) = [0.3, 0, 0, 0, 0]T,

resulting in no overshoot of the nominal system under LQR
control (4) in the first state. The constraint on the system
is chosen as a constraint on the first state

hT = [1/
√
hTΣ∞h, 0, 0, 0, 0], p = 84%,

with Σ∞ as the solution to the Lyapunov equation

Σ∞ = (A+BKLQR)Σ∞(A+BKLQR)T + 1.5BBT,

corresponding to the terminal variance of the system
under LQR control. Due to this specific choice, and the
fact that there is no overshoot for the nominal system
trajectory, the chance constraint is satisfied under LQR
control, representing the optimal solution to the problem
and providing a benchmark to compare against. For both
SMPC formulations, we make use of this LQR controller
as tube controller K = KLQR.

4.2 Numerical Results

We carried out 5000 simulations for N̄ = 200 time steps
with different noise realizations for each controller type,
namely LQR, indirect feedback and direct feedback SMPC,
each with prediction horizon N = 30. The results are
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Fig. 1. Results of 5000 simulations for different control for-
mulations showing the trajectory of the first state [x]1,
with one noise realization highlighted. The dashed line
illustrates the chance constraint.

displayed in Figure 1, where the top plot shows closed-
loop trajectory realizations under the optimal control law
provided by the LQR controller. The resulting cost J̄∗

from (3) can be analytically computed as

J̄∗ = 28.6,

together with a maximum probability of constraint vi-
olation under LQR control of 16%, due to our specific
choice of constraint. Quantified results of the performed
simulation runs are shown in Table 1 and show that these
theoretical quantities are well matched by the average cost
and the worst case empirical violation rate, computed by
averaging constraint violations over all 5000 simulation
runs and selecting the maximum resulting empirical viola-
tion rate over all time steps. From Figure 1 (middle) and
the values in Table 1, it is evident that the indirect feedback
SMPC formulation shows similar behavior to the optimal
LQR solution, with the apparent small differences due to
numerical noise and the finite simulation samples. This,
however, is different in a direct feedback formulation, which
represents the most common implementation of stochastic
MPC schemes. Here, we observe virtually no constraint
violations. In fact, we only observe 1 violation out of 5000
simulations with 200 time steps, i.e. a 0.02% maximum
empirical constraint violation rate. Visually, it is similarly
evident in Figure 1 that the chance constraint essentially
acts as a hard constraint in the direct feedback formulation.
Furthermore, Table 1 lists the total number of instances
over all time steps and simulations in which the magnitude
of the applied control input exceeds |u(k)| ≥ 4. This num-
ber is severely elevated in the direct scheme, illustrating
that large control actions must be applied in order arrive
at a predicted distribution satisfying the constraint.

5. CONCLUSION

This note presented a discussion and performance com-
parison of a common implementation scheme in stochastic
MPC, which we name direct feedback, to an alternative

Table 1. Performance Comparison

Controller Cost Empirical Violation # |u(k)| ≥ 4

LQR 28.6 15% 10
indirect 28.7 16% 11
direct 30.0 0% 183

indirect feedback implementation. It is argued and numer-
ically demonstrated, that a direct feedback formulation,
which aims to satisfy constraints at each time step with
regard to the predicted distribution given the currently
measured state, leads to significant conservatism with re-
spect to constraint satisfaction and reduced performance.
The indirect feedback formulation, on the other hand,
considers a closed-loop error distribution with respect to a
nominal state, and enables a non-conservative treatment of
constraints and the recovery of the true optimal solution.
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