
     

Hybrid MODE-SVR Algorithm for Nonparametric  

Dynamic System Identification of Autonomous Helicopter 
 

Ismaila B. Tijani*, Rini Akmeliawati** 


*
Electrical Engineering, ADMC, Higher Colleges of Technology, 

Abu Dhabi, UAE (e-mail: tismail@hct.ac.ae). 
**

School of Mechanical Engineering, University of Adelaide, Australia. 

(e-mail: rini.akmeliawati@adelaide.edu.au) 

 

Abstract: Practical application of SVR in nonparametric modeling requires not only achievement of 

acceptable model accuracy but also optimal reduction of the model complexity in terms of the associated 

support vectors. Attaining these performance metrics is not only challenging due to inherently conflicting 

nature of the duo performances, but also as a result of several structural parameters needed to be tuned in 

SVR deployment. In order to address this problem, a hybrid algorithm of SVR based on Multi Objective 

Differential Evolution (MODE-SVR) is proposed to search for the SVR structural parameters that 

provides Pareto-based optimal solutions for both model complexity and accuracy. The proposed 

algorithm is evaluated on nonparametric model of a UAV helicopter yaw dynamics. Performance 

analysis and comparative study with an existing method in MATLAB shows the effectiveness of the 

proposed hybrid algorithm. This is expected to simplify and enhance the practical application of SVR in 

machine learning applications. 
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1. INTRODUCTION 

Support Vector Regression is known as an extension of 

Support Vector Machine (SVM) to regression problems with 

introduction of -insensitivity loss function by Vapnik 

(1995). It is an interesting tool that is often used for 

nonparametric modeling based on experimental or continuous 

data. The applications are ranging from runoff forecasting 

(Chu et.al, 2016), stock price prediction in stock market 

(Rustam, 2018) to friction modeling for a DC-motor driven 

rotary motion system (Tijani, 2012a). 

In this paper, we propose a hybrid algorithm MODE-SVR 

that provides optimal search for the structural parameters of 

SVR for nonparametric modelling of the dynamics of a 

small-scale helicopter. Such optimal search will lead to 

Pareto-based optimal solutions to the model complexity and 

accuracy that are the typical conflicting performance 

specification in system modeling. The MODE-algorithm 

performs the optimal tuning of the SVR parameters. 

The rest of this paper is organized as follows. Section 2 

presents the proposed hybrid MODE-SVR algorithm and the 

illustration on an autonomous helicopter. Section 3 presents 

the results of the MODE-SVR nonparametric modeling. 

1.1 Support Vector Regression 

SVR is based on the principle of structure risk minimization, 

which minimizes an upper bound on the expected risk. This 

is different from traditional learning algorithms for function 

estimation, such as Neural Network that minimizes the error 

on the training data based on the principle of empirical risk 

minimization. Thus, SVR provides better ability to 

generalize, and at the same time less prone to the problems of 

overfitting and local minimal. The following describes SVR 

algorithm  (Smola, 2001).  

Given a set of N input/output data 
N

iii yx 1},{   such that 

n

ix   and  iy , the goal of  learning theory is to find 

a function f  which minimizes the expected risk (1): 

 ),())(,(][ yxdPxfyLfR           (1)             

where ))(,( xfyL is a loss is function, and ),( yxP is 

unknown probability measure which is assumed to be 

responsible for the generation of the data.  

Since function P is unknown, expression (1) cannot be 

directly computed, hence unlike traditional ERM principle 

that minimizes only the empirical risk (training error), 

statistical learning theory seeks to obtain a small risk in terms 

of both training error and model complexity by minimizing 

the regularized risk function (structural risk function) (2): 
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where C is a constant determining the trade-off with the 

complexity penalizer, 2

2

1
w

 is the regularization term (or 

complexity penalizer) used to find the flattest function with 

sufficient approximation qualities, ][ fRemp
 is empiric risk 

defined as (3):   
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Employing  -insensitivity SVR ( -SVR), the loss function 

))(,( ii xfyL  is replaced by the Vapnik’s   -insensitivity 

loss function given as (Vapnik, 1995): 
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and the goal of the function estimation is thus to minimizes 

(6.6):  
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For non-linear regression in the primal weight space the 

model is of the form: 

 bxxf T  )()(                (7) 

where for the given training set  N

iii yx
1

,


, hnn  :)( is 

a mapping to a high dimensional feature space by the 

application of the kernel trick define as (8) (Sch¨olkopf, 

2002): 
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The constrain optimization problem in the primal weight 

space is given by (9): 
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Subject to: i
T

i bxy   )(   Ni ,2,1    

and  *)( ii
T ybx        Ni ,,2,1    

where  *, ii  are the slack variables for soft margin. 

 

By defining the Lagrangian and applying the conditions for 

optimality solution, one obtains the following dual 

optimization problem (10):  
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Subject to:   0

1
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              and Cii  *,0   for all Ni ,,2,1    

             

The regression estimates is expressed as (11): 
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where *, ii  are the Lagrange multipliers which are the 

solution to the Quadratic optimization problem, and b follows 

from the complementary Karush-Kuhn-Tucker (KKT) 

conditions which state that at the point of the solution, the 

product between dual variables and constraints has to vanish 

as follows: 
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From the foregoing review, apart from the choice of the 

Kernel function, selection and tuning of associated 

optimization parameters such as kernel parameter, -loss 

function, conditioning parameter for the quadratic 

programming, known as the regularization parameter,  

(Vapnik, 1995), and bound on the Lagrangian multipliers, C,   

play important roles in overall performance of the regression 

process.  

2. PROPOSED HYBRID MODE-SVR 

2.1  Proposed Algorithm 

The proposed hybrid MODE-SVR is shown in Fig.1. The 

figure indicates that the MODE sub-algorithm is deployed to 

override the conventional manual tuning of the SVR 

structural parameters, i.e. C, , , and , where  is the 

Gaussian kernel parameter selected in this study. Hence, the 

MODE sub-algorithm searches for the SVR structure 

parameters that minimizes both the complexity of the model 

in terms of number of support vector (nsv) and the prediction 

error between the actual and predicted output given as  
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where   is prediction error expressed as )()( kyky


 . 

The hybrid algorithm was developed in MATLAB using the 

SVR sub-algorithm in (Canu et.al., 2012). Detailed 

description of the MODE algorithm is reported in (Tijani, 

2012a) 

 
Fig. 1. Proposed hybrid MODE-SVR. 

 

2.2  Helicopter Yaw Dynamics Flight Data 

The proposed MODE-SVR technique is illustrated on yaw 

dynamics data of an autonomous small-scale helicopter, 

Hirobo SDX50 which is reported in (Tijani et al., 2012b). 
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The general physical specifications of the helicopter are 

given in Table 1. 

Flight data was collected through the excitation of each of the 

system channels (roll, pitch, yaw and heave) with a sinusoidal 

input of varying frequency while keeping the system at 

desired hovering operating point as much as possible.  The 

yaw dynamics data pair   (pedal control input, uped, and yaw 

rate response, r) needed for this study.  

Table 1.  General specifications of Hirobo SDX50 

Helicopter 

Specifications Specifications 

Fuselage length 1220 mm Tail rotor 

diameter 

258 mm 

Fuselage width 186 mm Gear ratio 8.70 : 4.71 

Height 395 mm Dry 

weight 

3,400g 

Main rotor 

diameter 

1348 mm Engine 50 class 

The algorithm was implemented with the following pre-

specified MODE parameters: number of decision variables, , 

D = 4; population size as multiple of variable dimension NP 

= 20*D; generation size, GEN = 40; crossover constant, CR = 

0.5. The lower bound on the decision variables, L = 

0.0000001, and the upper bound, U = 10.  The process was 

repeated three times (RUNs) to evaluate consistence and 

convergence of algorithm.   Fig. 2 shows the comparison of 

the resulting non-dominated Pareto solutions’ front for the 

three RUNs. The detail solutions for the three RUNs 

comprises of objective functions/fitness, FitOB_NDS (nsv 

and mse), structure parameters, POP_NDS and constraint 

value, FitNC_NDS are presented in Table 2, 3 and 4.  

 
Fig. 2. Comparison of the Non-dominated Pareto solutions’ 

front for the three RUNS 

 

  Table 2.  First RUN 

 

For further analysis, sample candidates were  selected from 

the RUN1 (Table 2) to represent solution with highest 

complexity, RUN1-C4, solution with lowest complexity, 

RUN1-C7 and solution with average complexity, RUN1-C2. 

Fig. 3 and Fig. 4 show the comparative results of the three 

candidates with the experimental data.   

Table 3.  Second RUN 

 
 

     Table 4.  Third RUN 

 

 
Fig. 3. Experimental data and MODE-SVR RUN1-C4, C2 

and C7 predicted data with training dataset. 

 

 
Fig. 4. Experimental data and the MODE-SVR RUN1-C4, 

C2 and C7 predicted data with validation data 
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3. RESULTS AND ANALYSIS 

The performance of the proposed algorithm is benchmarked 

with MATLAB 2019b built-in SVR algorithm (Matlab, 

2020). Candidate, C4 of RUN1 is selected for this benchmark 

purpose. Fig. 5 shows the MATLAB-SVR optimization 

process performance. The comparison of both MODE-SVR 

and MATLAB-SVR with experimental data is shown in Fig. 

6 and Fig. 7 for training and validation dataset, respectively.  

Table 5 summarizes the performance parameters in terms of 

model complexity and prediction accuracy. First, in terms of 

the model complexity represented by the number of support 

vector (nsv), the proposed algorithm yielded lower complex 

model up to 30% reduction in model nsv. The performance is 

evaluated in terms of mean square error (mse). Though, both 

methods have similar prediction error on training dataset, the 

proposed hybrid algorithm outperformed the MATLAB-SVR 

on validation dataset which is an indication of better 

generalization. In general, without compromising the 

prediction accuracy, the hybrid MODE-SVR yielded simpler 

and more effective model for practical application 

 

Fig. 5. MATLAB SVR Optimization process performance 

Table 5. Performance Comparison of MODE-SVR and 

built-in MATLAB SVR 

Technique nsv Prediction error (mse) 

Training Validation 

MODE-SVR 682 0.0088 0.0121 

Matlab-SVR 995 0.00880 0.136 

 

Fig. 6. Comparison of MODE-SVR and built-in MATLAB-

SVR with training dataset 

 

Fig. 7. Comparison of MODE-SVR and built-in MATLAB-

SVR with validation dataset 

4. CONCLUSIONS 

The proposed hybrid MODE-SVR has demonstrated its 

effectiveness in tuning optimal SVR parameters in modeling 

of helicopter yaw dynamics using real-time flight data. The 

technique has been evaluated and compared with the typical 

SVR, MATLAB-SVR, and has demonstrated that it reduced 

the model complexity by 30% (represented by the number of 

support vector) and the increase the prediction accuracy by 

10%. 
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