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Abstract: In this paper, we present a novel approach to decompose a given piecewise affine
(PWA) function into two convex PWA functions. Convex decompositions are useful to speed
up or distribute evaluations of PWA functions. Different approaches to construct a convex
decomposition have already been published. However, either the two resulting convex functions
have very high or very different complexities, which is often undesirable, or the decomposition
procedure is inapplicable even for simple cases. Our novel methodology significantly reduces
these drawbacks in order to extend the applicability of convex decompositions.
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1. MOTIVATION AND OVERVIEW

PWA functions arise frequently in automatic control and
elsewhere. A popular example is explicit model predictive
control (Bemporad et al., 2002). Classically, the evaluation
of a PWA function f(x) for a given x in its domain is two-
stage. First, the segment of f that belongs to x is iden-
tified. Second, the corresponding affine function is eval-
uated. More efficient or distributed evaluations of PWA
functions can be realized by rewriting f as the difference
of two convex PWA functions. In fact, convexity of PWA
functions can be exploited to reduce memory consump-
tion and computational effort significantly (Nguyen et al.,
2017). Another application of convex decompositions is
DC programming (Horst and Thoai, 1999) that allows to
globally solve certain non-convex opimization problems.

While convex decompositions are useful, their construc-
tion is typically cumbersome. For instance, the approach
presented in Kripfganz and Schulze (1987) decomposes f
into two convex PWA functions g and h, where especially
the construction of h is numerically demanding. A simpler
construction is proposed in Hempel et al. (2015), but
the procedure is often not applicable. In this paper, we
present a novel convex decomposition that reduces the
weaknesses of both existing approaches while maintaining
their strengths. To this end, we summarize the existing
approaches in Section 2. Our novel method is presented
in Section 3 and illustrated with an example in Section 4.
Finally, conclusions are given in Section 5.

2. EXISTING CONVEX DECOMPOSITIONS

Throughout the paper, we focus on the decomposition of
a given continuous PWA function f : Rn → R of the form

f(x) :=


a>1 x+ b1 if x ∈ X1,

...
a>s x+ bs if x ∈ Xs,

(1)

into two convex PWA functions g and h such that

f(x) = g(x)− h(x) (2)
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Fig. 1. Illustration of a PWA function f resulting from the
MPC example in Section 4 and N = 10.

holds for every x in the domain F :=
⋃s
i=1 Xi of f . In this

context, the partition {Xi}si=1 (often abbreviated as {Xi})
is assumed to satisfy the following conditions.

Assumption 1. The sets Xi are polyhedral, convex and
offer int(Xi) 6= ∅ (nonempty interiors) as well as int(Xi) ∩
int(Xj) = ∅ for every i 6= j (pairwise disjoint interiors).

We note, however, that sets Xi and Xj may have over-
lapping boundaries. In such cases, continuity of f requires
a>i x+ bi = a>j x+ bj whenever x ∈ Xi∩Xj . For complete-
ness, we finally note that ai ∈ Rn, bi ∈ R, and s ∈ N with
s referring to the number of segments in (1). An example
of a function f as defined above is shown in Figure 1.
It is well known that a decomposition of the form (2) is
not unique but in principle always possible (Kripfganz and
Schulze, 1987). Two existing approaches will be discussed
next.

2.1 Decomposition via convex folds

The first approach builds on the constructive decomposi-
tion proof in Kripfganz and Schulze (1987). The underlying
idea is to collect all convex folds of f and to use them in
a certain way to construct g. More formally, let
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Fig. 2. Illustration of equation (4) evaluated for the PWA
control law shown in Figure 1.

I :=
{

(i, j) ∈ {1, . . . , s}2
∣∣ dim(Xi ∩ Xj) = n− 1, i < j

}
collect index pairs of neighboring polyhedra Xi and Xj
that share a common facet. Further, let

V :=
{

(i, j) ∈ I
∣∣a>i x+ bi > a

>
j x+ bj , x ∈ Xi \Xj

}
, (3)

denote the subset of I that collects facets on which f
features a convex fold. Then,

g(x) :=
∑

(i,j)∈V

max{a>i x+ bi,a
>
j x+ bj} (4)

is obviously a convex function since the maximum of affine
functions is convex and since sums preserve convexity.
More interestingly, the function

h(x) := g(x)− f(x) (5)

is convex (Kripfganz and Schulze, 1987, Lem. 1). Since
(2) holds by construction, g and h indeed form a convex
decomposition of f .

While the decomposition is elegant from a mathematical
point of view, it is (computationally) demanding to express
g and h in a form similar to (1). Regarding g, we note that
every summand max{a>i x+bi,a

>
j x+bj} refers to a convex

PWA function with two segments implicitly defined on the
two halfspaces

a>i x+ bi ≥ a>j x+ bj and a>i x+ bi ≤ a>j x+ bj , (6)

respectively. The superposition (or summation) of all these
one-folded functions leads to a convex PWA function as
in Figure 2. Note that the underlying partition results
from “cutting” F using every separating hyperplane a>i x+
bi = a>j x+bj induced by (6) for (i, j) ∈ V. Overlaying the
resulting partition for g with the original partition {Xi}
of f leads to another partition that allows to express h
as a PWA function. In fact, since g and f are affine on
every subset of the latter partition, also h is affine there as
a consequence of (5). Unfortunately, the partition of h is
often significantly finer (i.e., it consists of more polyhedra)
than the ones of f and g. This effect is, for example,
apparent from Figure 3.

2.2 Optimization-based decomposition

As proposed in Hempel et al. (2015), a convex decom-
position can also be constructed optimization-based. In
contrast to the previous approach, the optimization-based
decomposition yields functions g and h, which are defined

Fig. 3. Illustration of equation (5) evaluated for the PWA
control law shown in Figure 1.

on the same partition {Xi} as f . In other words, the
functions f , g, and h will all be affine on each polyhedron
Xi. The corresponding affine segments of g and h will
be denoted with k>i x + ci and l>i x + di, respectively. A
decomposition satisfying (2) then requires

ai = ki − li and bi = ci − di (7)

for every i ∈ {1, . . . , s}. It remains to enforce convexity of
g and h. To this end, for every (i, j) ∈ I, we consider the
inequality constraints

k>i x+ ci ≥ k>j x+ cj and l>i x+ di ≥ l>j x+ dj (8a)

for every x ∈ Xi as well as

k>i x+ ci ≤ k>j x+ cj and l>i x+ di ≤ l>j x+ dj (8b)

for every x ∈ Xj . Obviously, the combination of the first

condition in (8a) and (8b) implies k>i x + ci = k>j x + cj
for every x ∈ Xi ∩ Xj , i.e., continuity of g. Analogously,
continuity of h is ensured. We further note that, in contrast
to (3), strict convexity is not required in (8).

Assuming half-space representations of the subsets Xi are
at hand, i.e., Xi = {x ∈ Rn |V ix ≤ wi}, (8) can be ef-
ficiently verified using Farkas’s lemma. Conditions (8) are
satisfied if and only if there exist (Lagrange multipliers)
λij , µij , λji, and µji of appropriate dimensions such that

0 ≤ λij , V >i λij = (kj − ki)>, w>i λij ≤ ci − cj (9a)

0 ≤ µij , V
>
i µij = (lj − li)>, w>i µij ≤ di − dj , (9b)

0 ≤ λji, V >j λji = (ki − kj)>, w>j λji ≤ cj − ci, (9c)

0 ≤ µji, V
>
j µji = (li − lj)>, w>j µji ≤ dj − di. (9d)

Now, any feasible solution to (7) and (9) provides a valid
decomposition of f into two convex PWA functions. The
feasibility problem can be extended by a user-defined cost
function or additional constraints in order to promote
certain features of g and h. For example, minimizing the
quadratic cost function

s∑
i=1

k>i ki + c2i + l>i li + d2i

subject to (7) and (9) promotes small coefficients (absolute
values) for g and h.

Unfortunately, a severe drawback of this decomposition
is that feasibility of the optimization problem requires
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Fig. 4. Hyperplane arrangement (dark gray partition)
applied to a non-regular partition (black) resulting
from the MPC example in Section 4 and N = 3.

regularity of the partition {Xi} (see (De Loera et al.,
2010, page 53) for details), which is often not fulfilled
even for simple partitions. To regularize a non-regular
partition, hyperplane arrangement as proposed in Nguyen
et al. (2017) can be used. Here, the hyperplanes defining
each polyhedron Xi are extended to the boundary of
F . If polyhedrons intersect these extended hyperplanes,
they are split. The result is a highly refined partition as
illustrated in Figure 4 for an example. Due to the high
number of polyhedrons, illustrating this method for finer
partitions (N ≥ 5, see Section 4) is meaningless.

3. NOVEL CONVEX DECOMPOSITION

As an intermediate summary, the approach in Kripfganz
and Schulze (1987) typically provides a simple partition
(and construction) for g and a complex one for h. The ap-
proach in Hempel et al. (2015) allows for user-defined de-
signs of g and h but the underlying optimization problem is
often not feasible without additional regularization strate-
gies. In the following, we present a novel optimization-
based decomposition scheme that is always applicable and
that provides functions g and h with identical complexi-
ties.

As a preparation, we introduce the set

A := {(i, j) ∈ I |a>i x+ bi < a
>
j x+ bj , x ∈ Xi \ Xj}

that, analogously to (3), collects all concave folds of f .
Based on this set, one is tempted to construct h as

h(x) := −
∑

(i,j)∈A

min{a>i x+ bi,a
>
j x+ bj} (10)

in analogy to (4). While such an h would indeed be convex,
condition (2) would not be satisfied in general. However,
it is easy to see that the combined partitions induced
by (4) and (10) are always regular. In fact, both can be
considered as a hyperplane arrangement for the convex
respectively concave folds of f . Our simple idea for a novel
decomposition is to consider this combined partition for an
optimization-based decomposition. More precisely, let

(i1, j1), . . . , (ip, jp)

denote the p := |V|+|A| index pairs in V∪A. Now, for any
k ∈ {1, . . . , 2p}, let β1, . . . , βp ∈ {0, 1} express the unique
binary representation satisfying

k = 1 +

p∑
d=1

βd2
d−1.

Then, we define the k-th subset of the novel partition as

Pk :=
{
x ∈ F | (−1)β1

(
(ai1 − aj1)>x+ bi1 − bj1

)
≥ 0,

...

(−1)βp
(
(aip − ajp)>x+ bip − bjp

)
≥ 0
}
.

Typically, many of these sets are empty or of lower
dimension than n. Hence, we consider only those subsets
with non-empty interiors, i.e., the sets Pk with

k ∈ K := {k ∈ {1, . . . , 2p} | int(Pk) 6= ∅}.
The sets Pk reflect all combinations of the halfspaces (6)
for all (i, j) ∈ V ∪A intersected with the set F . Hence, the
following proposition holds by construction.

Proposition 1. Let F , Pk, and K be as above. Then, {Pk}
is a regular partition and F =

⋃
k∈K Pk.

We note, at this point, that K can be efficiently computed
without an extensive search over all 2p combinations, e.g.,
by using binary search trees. Next, before presenting our
optimization-based decomposition, we define the function
f ′ := F → R segment-wise, for every k ∈ K, as

f ′(x) := a>lkx+ blk whenever x ∈ Pk,
where lk is an arbitrary but fixed lk ∈ {1, . . . , s} satisfying
int(Xlk)∩ int(Pk) 6= ∅. Such an lk exists for every k ∈ K as
a result of Assumption 1, int(Pk) 6= ∅, and Proposition 1.
Not surprisingly, f ′ is equivalent to f as specified in the
following proposition.

Proposition 2. Let f and f ′ be defined as above. Then,

f(x) = f ′(x)

for every x ∈ F .

We omit a formal proof of Proposition 2 due to space re-
strictions and concentrate on the application of the results
above. In this context, we simply apply the optimization-
based decomposition from Section 2.2 to the function f ′

defined on {Pk}. Since {Pk} is regular by construction, the
corresponding optimization problem is always feasible and
since f ′ is equivalent to f , we obtain a valid decomposition
for f with identical complexities of g and h.

4. CASE STUDY FOR EXPLICIT MPC

We study an explicit model predictive controller (MPC) to
illustrate our novel decomposition and to compare it with
the existing ones. In this context we recall that explicit
MPC for linear systems with polyhedral constraints and
quadratic performance criteria is known to result in PWA
control laws (Bemporad et al., 2002).

For simplicity, the double integrator dynamics

x(k + 1) = Ax(k) +Bu(k) =

(
1 1
0 1

)
x(k) +

(
0.5
1

)
u(k)

are considered with the state and input constraints

x(k) ∈ X := {x ∈ R2 | |x1| ≤ 25, |x2| ≤ 5} and

u(k) ∈ U := {u ∈ R | |u| ≤ 1}.
MPC then builds on solving the optimal control problem

V (x) := min
x̃(0),...,x̃(N)

ũ(0),...,ũ(N−1)

‖x̃(N)‖2P +

N−1∑
κ=0

‖x̃(κ)‖2Q + ‖ũ(κ)‖2R
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Fig. 5. Novel decomposition for f as in Figure 1.

s.t. x̃(0) = x, (11)

x̃(κ+ 1) = Ax̃(κ) +Bũ(κ), ∀κ ∈ {0, . . . , N − 1}
x̃(κ) ∈ X , ∀κ ∈ {0, . . . , N − 1}
ũ(κ) ∈ U , ∀κ ∈ {0, . . . , N − 1}
x̃(N) ∈ T

in every time step for the current state x = x(k).
Here, N refers to the prediction horizon, Q, R, and P
are weighting matrices, and T is a terminal set. The
control action at time k refers to the first element of
the optimal control sequence, i.e., u(k) = ũ∗(0). For
our numerical benchmark, we choose N ∈ {1, 5, 10, 15},
Q = I and R = 1. The (positive definite) matrix P is the
solution to the discrete-time algebraic Riccati equation.
The set T is chosen as the largest subset of X , where the
linear quadratic regulator can be applied without violating
constraints. It is well known that (11) can be rewritten
as a parametric quadratic program that admits a PWA
solution in its parameter (Bemporad et al., 2002). As a
consequence, also the control law f(x) := ũ∗(0) is PWA.
Next, we apply the two existing decompositions and our
novel approach to this f(x), which is illustrated in Figure 1
for the example at hand and N = 10.

With regard to practical applications, we are mainly in-
terested in the complexity of the resulting functions g and
h. We measure their complexity by counting the number
of polyhedrons forming the underlying partitions. These
numbers are compared with the number of segments s of
f for differentN . Numerical results are given in Table 1. As
apparent from the table, we obtain different complexities
for g and h using the decomposition from Kripfganz and
Schulze (1987). Moreover, the approach from Hempel et al.
(2015) is, without hyperplane arrangement, only applica-
ble for the trivial case N = 1. In all other cases, i.e., for
N > 1, a regularization has to be applied. Following the
hyperplane arrangement approach in (Nguyen et al., 2017,
Alg. 4), we obtain partitions with the listed complexities.
Finally, the complexity of the partition {Pk} underlying
our novel decomposition is given in the last row of Table 1.
An illustration for N = 10 can be found in Figure 5.

It can be seen that every method refines the initial parti-
tion {Xi}. A decomposition via convex folds leads to signif-
icantly more complex partitions for h. Due to hyperplane
arrangement the partition related to the optimization-
based approach gains rapidly in complexity, rendering the
method impractical for complex initial partitions. Our

Table 1. Number of polyhedrons for resulting
partitions with varying N

N = 1 5 10 15

initial partition 7 75 223 293
via convex folds† 14, 19 103, 298 105, 581 106, 697
optimization-based? 7 4353 22638 26786
novel decomposition 33 331 339 347

† complexity of g and h, respectively
?
for N > 1 hyperplane arrangement is used for regularization

approach provides equal and moderate complexities for
both functions g and h. Interestingly, for N = 15, we
obtain an accumulated complexity of 2 × 347 = 694 that
is even smaller than 106 + 697 = 803 as for the approach
from Kripfganz and Schulze (1987).

As initially mentioned, convex decompositions can be used
to speed up the evaluation of f . To see this, note that

f(x) = max
{
k>1 x+ c1, . . . ,k

>
|K|x+ c|K|

}
−max

{
l>1 x+ d1, . . . , l

>
|K|x+ d|K|

}
(12)

due to convexity of g and h (Hempel et al., 2015, III.C).
Now, standard implementations of explicit MPC use bi-
nary search trees to identify the “active” segment in (1).
In contrast, (12) allows to evaluate f by selecting the
maximum from all affine segments of g and h, respectively.
For the given example, a comparison between these two
methods shows an average reduction of evaluation times
by a factor of 10 while storage capacity is 16 times reduced.

5. CONCLUSIONS

We presented a novel optimization-based procedure for the
decomposition of a given PWA function into two convex
PWA functions. In contrast to existing approaches, the
novel procedure is always applicable and it provides two
convex functions of identical complexity (in terms of the
underlying partitions). The benefits of our scheme were
illustrated with a case study on explicit MPC. Future
research will focus on techniques to further reduce the
complexities of the resulting partitions.
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