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Abstract: Though most of the existing work focus on parametric modeling, non-parametric
modeling methods have attracted a lot of attention these days, partly because it does not
require the structural information such as system orders. From the viewpoint of control
system analysis and synthesis, frequency responses are crucial in practice. Hence, the frequency
domain models are important. Nevertheless, there are not so many reports which evaluate the
effectiveness of nonparametric frequency modeling methods so far. Hence, this paper focuses on
numerical evaluation of such modeling methods. First, the effectiveness of the periodic input
(for identification) is demonstrated for a stable system in the presence of input noise as well
as the output one. Second, it is shown that the frequency domain methods are effective for a
closed loop system with unknown nonlinear stabilizing controller.
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1. INTRODUCTION

Most of the existing researches on system modeling have
been focusing on parametric modeling (i.e. finding the
model parameters see e.g., Ljung (2001),), with the as-
sumption that the system structure (such as the order of
the target system) is known. However, it is often difficult
to determine the system structure in practice. One way
to avoid this problem, which has been attracting a lot of
attention in the recent years, is to adopt nonparametric
modeling methods instead.

Nonparametric identification can be done in both time and
frequency domains (see Pintelton and Schoukens (2001)).
Though the time domain methods (see e.g., Pillonetto
et al. (2018) ) are much popular than the frequency
domain ones, the later methods have various merits: (i)
They directly handle the frequency responses which play
an essential role in control system design and analysis.
(ii) They can handle the input noise easily as well as
the output noise, and the noise could be colored. (iii)
The closed loop identification can be done by using the
standard procedure, hence no advanced techniques are
needed. This is in contrast to the parametric modeling
methods (see e.g., Maruta and Sugie (2018)) . So far,
some important progress (such as the method to cope
with the leakage effects) has been made in frequency
domain nonparametric modeling ( see Pintelton et al.
(1997), Schoukens et al. (2018)). However, despite of
its importance, not so much numerical evidence has been
shown how effective the frequency domain methods are.
Hence they may be underestimated for many control
engineers.

⋆ This work is partly supported by JSPS KAKENHI No.
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Based on the above observations, this paper tries to
demonstrate their effectiveness through numerical exam-
ples. The authors are interested in whether the standard
frequency domain approach is effective for some difficult
cases. One is that the target system has both fast and
slow modes with an unstable zeros. The other is that the
system itself is unstable but it is stabilized by an unknown
nonlinear controller. In addition, the colored noise may be
added at the input/output channels.

2. NONPARAMETRIC FREQUENCY DOMAIN
MODELLING

This section summarizes some basic tools (see Schoukens
et al (2012)) for nonparametric frequency domain model-
ing.

Let u(kTs)(k = 0, 1, ..., N − 1) be the time domain data
with sampling time Ts. Its DFT(Discrete Fourier Trans-
form) is defined by

U(ℓ) =
1

N

N−1∑
k=0

u(kTs)e
−j2π kℓ

N

where ℓ is the frequency line index. The line index can be
transformed into the frequency scale f by using: f = l

N fs
with fs =

1
Ts

being the sampling frequency.

For periodic excitation, random multisine signals will be
used. A multisine signal is the sum of harmonically related
sines, i.e.,

u =

F∑
k=1

A sin (2πkf0t+ ϕk).

where the amplitude A is constant and the phase ϕk will
be randomized.

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors



An alternative method to excite every frequency at the
same time is to use random excitation, specifically Gaus-
sian noises.

2.1 Calculating the Frequency Responses

Consider the open loop system shown in Fig. 1,

Fig. 1. Open loop system.

where u(t), y(t), g(t) are the input, the output and the
target system model, respectively, in the time domain.
Define U(k), Y (k), G(k) as the Discrete Fourier Trans-
form of u(t), y(t), g(t) with respect to the frequency
index k. Ignoring the finite length measurement effects,
the following relation holds:

Y (k) = G(k)U(k) (1)

This relation is used to estimate G(k) (FRF: Frequency
Response Function) in the case of periodic inputs and if
U(k) does not become very small or equal to zero.

Alternatively, by calculating the cross-spectrum SY U and
the auto-spectrum SUU , the FRF is obtained by

G(k) =
SY U (k)

SUU (k)
. (2)

This one is used in the case of random inputs.

As for the closed loop system shown in Fig. 2, eq.(1) is
used for periodic inputs, and

G(k) =
SY R(k)

SUR(k)
(3)

is used for random inputs, where R is the DFT of the
reference signal r.

Fig. 2. Closed-loop system

A typical example of FRF estimation results are shown
in Fig. 3. The measured FRF in the case of random
excitation using the indirect method by eq.(3) (represented
by pink line) and the measured FRF in the case of periodic
excitation using the direct method by eq. (1) (represented
by blue dot) have no bias, while bias is present when the
direct method is used on random signal (represented by
red line) due to the correlation between the input and
the output noise. This example shows that the closed loop
identification is straightforward in the frequency domain
approach, which is not the case for most of the time
domain approach.

3. SIMULATION RESULTS

In this section, the FRF of a couple of systems under
various condition will be evaluated. The FRF will be
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Fig. 3. Calculating the FRF under feedback condition with
noise present

estimated using the measured data u(t) = u0(t)+nu(t) and
y(t) = y0(t) + ny(t) instead of its true value u0(t), y0(t),
where nu(t) and ny(t) denote the measurement noises.

3.1 Open Loop System

Consider the system S1 depicted in Fig. 4, where G1 is
the transfer function of the target system, and Nu and Ny

represent the noise filters driven by white noises nu and
ny, repectively. These are given by

G1 =
9(s2 + 5.6s+ 25)(1− 4s)

(s2 + 0.8s+ 1)(s2 + 0.9s+ 225)
(4)

Nu =
121(s2 + 8s+ 64)(1− 7s)

16(s2 + 0.1s+ 0.25)(s2 + 4.4s+ 1936)
(5)

Ny =
49(s2 + 0.9s+ 225)

225(s2 + 1.4s+ 49)(1 + 0.000001s)
. (6)

The target system has two resonances at 1 rad/s and 15
rad/s, with the second resonance having less damping.
The system also has an antiresonance at 5 rad/s, and
an unstable zero at 0.25 rad/s. The noise filter Ny is set
such that its antiresonance is at the same frequency as the
second resonance of the system.

Fig. 4. Open loop system S1

The results when only output noise exists are shown in
Figs. 5 to 7. We use M sets of subrecords and average the
frequency domain data (U(k), Y (k)) in order to reduce
the noise effect. M ranges from 6 to 500. Each subrecord
contains 10, 000 data points with sampling frequency of
100 Hz. Figs. 5 and 6 show the estimation error of the gain
plots and the FRF’s phase plots, respectively. Here, the red
and blue data signify the results using random excitation
and periodic excitation, respectively. In Fig. 5, the true
FRF plots are also shown by the lines in black for reference.
Fig. 7 shows the comparison of estimation errors in the
case of random excitation to evaluate the effectiveness
of Local Polynomial Method (LPM, see Schoukens et al.
(2018)) which is used to reduce the leakage error due to
finite time length and the initial condition. The line in red
represents the estimation error when LPM is not applied,
and the line in blue shows the error with LPM. This figure
shows that LPM reduces the estimation error.
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Multi-sine signals give better results, as expected. It is
observed that the complexity of the system and the noise
color do not affect the modeling process. In addition to
this, the following points are also important:

(1) As seen in Fig. 5, the antiresonance characteristics of
the noise is completely lost for random signals, due
to the leakage error, but is kept intact for periodic
signal. Therefore, periodic signals can be used in noise
analysis.

(2) As seen in Fig. 7, even when using LPM, high leakage
error still appears at the second resonance frequency.
This is because the frequency resolution is not small
enough to capture the sharp resonance peak.

Fig. 5. Gain plots of the estimation errors of G1 in open
loop with output noise.

Fig. 6. Phase plots of estimated G1 in open loop with
output noise.

Fig. 7. Gain plots of the estimation errors of G1 in open
loop (with/without LPM)

We tested the case where both input and output noises
exist. The estimated FRFs are shown in Fig. 8. The lines
in red correspond to the random excitation and those
in blue are related to mulit-sine excitation. The blue

ones outperform the red ones again. Though the detail is
omitted here, the LPM does not improve the performance
very much in this case.

Fig. 8. Gain plots of the estimated FRF in open loop (with
both input and output noises)

3.2 Closed Loop System

Consider the system S2 depicted in Fig. 9 with

G2 =
1

s(s− 1)

C =
7s+ 1

s+ 4

z(t) = y(t) + y3(t)

where the noises nu and ny are white.

Fig. 9. Closed loop system S2.

The target system G2 is an unstable system, and it is
stabilized by some unknown nonlinear controller. Fig. 10
shows the gain plots of estimation errors when only the
output noise exists. The line in red corresponds to random
excitation, and the line in blue shows the results of multi-
sine excitation. The line in black represents the true FRF
for reference. Because of the measurement noises (Signal to
Noise Ratio with an average of 31 dB), it can be seen from
Fig. 10 that the error levels are quite similar at the higher
frequency (say 2Hz or higher ) in both case (random or
periodic excitation). However, at the lower frequency, the
inherent error caused by random excitation has stronger
effect than the output noise. Hence periodic excitation
outperforms clearly.
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Fig. 10. Gain plots of estimation errors of G2 in closed
loop with output noise.

Fig. 11 shows the gain plots of estimation errors when
both input and output noises exist. Though the difference
between two cases (random/periodic excitation) become
smaller, the periodic excitation still outperforms in this
case.

Fig. 11. Gain plots of estimation errors of G2 in closed
loop with input/output noise.

4. CONCLUSION

The nonparametric frequency domain modeling is shown
to be quite effective, especially when used with periodic
excitation. It provides us a good quality of FRF estimation
even for an unstable system that is stabilized with nonlin-
ear controller, and for open/closed systems in the presence
of I/O colored noises. Also no special techniques are not
necessary. Hence, much more attention should be paid to
this frequency domain approach. On the other hand, it
may be difficult in many practical cases to use multi-sine
signals, and it often requires huge number of data (e.g,
more than a million) in order to reduce the noise effects.
One important future topic is that to develop a method
which overcomes these weak points.
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