

Customization of agent-based manufacturing applications

based on domain modelling

O. Casquero*, A. Armentia*, E. Estevez**, A. López*, M. Marcos*

*Systems Engineering and Automatic Control Department, University of the Basque Country (UPV/EHU),

Bilbao, Spain (e-mail: {oskar.casquero, aintzane.armentia, alejandro.lopez, marga.marcos}@ehu.eus).

** Electronics and Automation Engineering Department, University of Jaén,

Jaén, Spain, (e-mail: eestevez@ujaen.es)

Abstract: Agent-based architectures have become a mainstream technological concept that may allow

factories to adopt distributed intelligence patterns that enable the advanced manufacturing model of

Industry 4.0. However, there is a lack of methodologies and tools that support the specification,

deployment and execution of agent-based manufacturing applications. This article describes the first

steps to build an agent-based platform that provides a reusable software core that can be customized to

offer the services required for factory-specific manufacturing systems. In this sense, the contribution of

this article is two-fold: on the one hand, the proposal of a model-based definition of manufacturing

applications based on factory-specific concepts that are represented in three XML schemas; on the other

hand, a proposal for distributing the complexity of product intelligence in a set of agents that allow

achieving separation of concerns regarding customer interaction and traceability of the production.

Keywords: flexible manufacturing, product-oriented manufacturing, model-driven design, multi-agent

systems, XML schema

1. INTRODUCTION

Holonic multi-agent architectures (HMAA) (Leitão, 2009)

and the notion of product intelligence (McFarlane et al.,

2013) have become a great influence to adopt distributed

intelligence patterns for enabling the advanced manufacturing

model of Industry 4.0 (Cruz Salazar et al., 2019). The holonic

approach can be implemented using multi-agent technology.

The majority of agent-based HMAA are based on two agents:

the Product Agent (PA) and the Resource Agent (RA)

(Kovalenko et al., 2019b). The PA is where the product

intelligence is introduced: the PA is tasked with seeking the

manufacturing resources needed by its physical part and

triggering the different manufacturing services offered by

RAs. The RA is responsible for interfacing the equipment in

response to service requests from the PAs.

Most of the research efforts in this area have been focused on

the extension of PA and RA-based agent architectures (Cruz

Salazar et al., 2019) or the proposal of different methods for

product planning, scheduling and execution control

(Kovalenko et al., 2019a). In order to assess the feasibility of

their proposals, most of these works simulate the

manufacturing systems used in their test benches, while only

a few of them address the issue of implementing them. As far

as authors know, the design of digital platforms that enable

flexible orchestration of manufacturing applications remains

a challenge that requires further research. The modelling and

formal validation of manufacturing applications plays a key

role to deal with this challenge (Leitao et al., 2006). The

modelling of manufacturing applications involves identifying

the entities and the structure that underlie those applications,

whereas the formal validation aims to verify the correctness

of factory-specific instances of those applications.

Traditionally, the modelling of manufacturing applications

has been focused in UML, whereas Petri nets have been

proposed for the formalization of the behavior and interaction

of the collaborative entities in a manufacturing system

(Leitao et al., 2006). However, to the knowledge of the

authors, little attention has been given to the specification of

the manufacturing applications from which the corresponding

agents can be automatically generated. In order to generate a

correct agent set, it is mandatory to analyze the correctness of

the application specification.

In this context, the contribution of this work is twofold. On

the one hand, it presents a generic registration process for the

definition of custom manufacturing applications. It is based

on a model-driven design (MDD) approach (i.e., in terms of

concepts, terminology and syntax of the application), making

it possible to customize an agent-based platform to a concrete

manufacturing domain. On the other hand, the feasibility of

the MDD approach is illustrated with a proposal for

distributing the complexity of the product-oriented

manufacturing (POM) in a set of agents that allow achieving

separation of concerns regarding customer interaction and

production scheduling and supervision.

The rest of the paper is organized as follows: Section 2

details the modelling approach and the registration process

that allows the definition of factory-specific manufacturing

applications; in Section 3, the modelling approach is

illustrated with a proposal for the separation of concerns of

the POM; finally, Section 4 collects the conclusions.

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors

2. DOMAIN MODELLING AND VALIDATION

The model-based approach for the complete and correct

definition of manufacturing applications must cope with

variations in the manufacturing application definition (new

characterization of a concept, new concepts or new

relationships among them) which can be derived from the

flexibility demands of current evolving manufacturing

systems. This paper proposes defining these applications

through the definition of the domain model in three steps.

Initially, it is necessary to identify the set of application

concepts relevant to the manufacturing domain. These refer

to application entities that will play a relevant role within the

multi-agent manufacturing architecture. For example,

Kovalenko et al. (2019b) consider manufacturing applications

as a set of PAs, each one in charge of scheduling and

supervising the manufacturing processes related to its

associated physical part. Similarly, the approach described in

Vrba et al. (2011) also identifies PAs as key elements of their

holonic architecture, in charge of scheduling the production

plan to achieve the final product. In addition, Vrba et al.

(2011) also define Order Agents (OAs) for receiving orders

from higher levels of the control system and creating the PAs.

Thus, Kovalenko et al. (2019b) identify a unique application

concept: The Product; whereas Vrba et al. (2011) distinguish

two concepts: The Order and the Product.

Once the relevant concepts are identified, the first step is to

characterize such concepts with the information that the

corresponding agents need to ensure their correct execution.

For instance, the Product concept of Vrba et al. (2011) can be

characterized in terms of the type of the product, the quantity

of items to be produced and the production steps that

conform its production plan. As the management of a

manufacturing system may evolve, it could happen that an

agent would need to manage new information, which implies

extending or modifying the characterization of its

corresponding concept. To that end, we propose collecting

the set of properties that characterize every concept in a

separate meta-model, the Properties meta-model. A possible

XML schema for this meta-model is presented in Fig. 1. It is

possible to define simple properties as attributes (e.g., the

type of the product as the type attribute) and complex

properties through groups of elements (e.g., the

productionPlan property as a sequence of production steps).

The second step is to declare the concepts in the so-called

Concepts meta-model. As illustrated in Fig. 2, the Concepts

XML schema includes the Properties XML schema, linking

concepts with their characterizations. Besides, Fig. 2

exemplifies the approach described in Vrba et al. (2011),

declaring the Order and Product concepts as root elements.

The third step is to define the hierarchy, if any, among the

different concepts. This is the case of the approach proposed

by Vrba et al. (2011), where a hierarchy exists between the

Order concept and the Product concept, since the OAs create

as many PAs as the number of products characterizing the

order. Therefore, the agent related to a concept of the

hierarchy is responsible for creating the agents belonging to

the immediate lower level. The hierarchy is defined in the

Hierarchy meta-model, which redefines the concepts to

reflect the hierarchical structure among them. Fig. 3

illustrates the case of Vrba et al. (2011), where the Order

concept is redefined to reflect the hierarchical relation with

the Product concept.

Fig. 1. Implementation of the Properties meta-models in an

XML schema.

Fig. 2. Implementation of the Concepts meta-models in an

XML schema

Fig. 3. Implementation of the Hierarchy meta-model in an

XML schema.

Regarding the validation of manufacturing applications, a

generic registration process is proposed to ensure that only

complete and correct factory-specific manufacturing

applications are defined. The registration of a manufacturing

application consists of the registration of all its composing

entities as follows (see Algorithm 1):

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

• Phase 1. An initial iterative entity registration which

includes unitary validation. In this phase, the

manufacturing platform assigns a unique identifier to

each new correct entity. In the example, the order and

its products must be registered to complete the whole

application registration. Additionally, in the case of a

hierarchical application structure, the iterative

registration of application entities must be performed

in a top-down way. That is, product registration does

not follow any concrete order for Kovalenko et al.

(2019b), whereas the orders of Vrba et al. (2011) have

to be registered before their products.

• Phase 2. The validation of the application hierarchy.

The approach proposed by Vrba et al. (2011) will be used to

illustrate the registration of an order with two products. Every

entity registration starts with a request from an external actor,

which must provide the manufacturing platform with the

following information (Algorithm 1, Phase 1): a) the concept

related to the new application entity, e.g., a Product concept;

b) main characteristics of the new entity, namely: the type of

the product (P1), the quantity of items to be produced (100)

and the production steps that conform its production plan

(Drill, Fill, Weld…); and c) the parent entity at the hierarchy,

identified by its unique identifier and the related concept. In

the example, the parent of the P1 product must be a

previously registered entity of the Order concept.

Then, the new entity is validated (Algorithm 1, line 6) as it is

detailed in Algorithm 2. Initially, it is verified that the parent

entity has been previously registered. Then, the new entity is

validated (Algorithm 12, line 10) in terms of its main

properties by means of the Concepts meta-model

(Concepts.xsd). If correct (Algorithm 1, line 10), up-to-now

registered entities are stored at a temporary model

(temp_app.xml). Finally, when all the application entities

have been registered, the whole manufacturing application is

checked (Algorithm 1, Phase 2). For that, the temporary

model is validated against the Hierarchy meta-model

(Hierarchy.xsd) to ensure that the application follows the

previously defined hierarchical and dependency relations. If

the application structure is correct, the new manufacturing

application is stored in the platform, ready for its start-up.

3. A PROPOSAL FOR ACHIEVING POM

The second contribution of the paper is the proposal of a

platform for POM, named FLEXMANSYS (FLEXible

MANufacturing SYStem) which supports a) model-based

definition of manufacturing applications based on factory-

specific concepts, and b) the execution and management of

those applications through a set of distributed agents that are

created from those factory-specific concepts. The concepts,

terminology and syntax of the applications handled by

FLEXMANSYS are defined by the structure of the three

XML schemas described in Section 2. Thus, FLEXMANSYS

can be customized to any factory or manufacturing domain.

FLEXMANSYS lies on an agent-based middleware whose

core consists of the System Agent (SA). The SA provides an

application programming interface (API) that allows a)

registering, starting and stopping manufacturing applications;

and b) querying and updating the status of the whole

manufacturing system (stored in the so-called System Model,

SM) throughout the whole execution cycle of the application.

Algorithm 1. Generic registration process of manufacturing applications.

Input: manufacturing_app as an entity_set

Output: temp_app.xml

 1: // Phase 1: iterative entity registration and validation
 2: for each entity in entity_set ordered by top_down in hierarchy do

 3: set concept of entity

 4: set properties of entity
 5: set parent_id and parent_concept of the parent of entity

 6: entity_result ← call entity_validation with entity parameter

 7: if entity_result is valid then
 8: assign entity_id to entity

 9: get hierarchical_position of entity from Hierarchy.xsd

10: append entity to temp_app.xml
11: else

12: break registration_process

13: end if

14: end for

15: // Phase 2: manufacturing_app validation

16: result ← validate temp_app.xml against Hierarchy.xsd
17: if result is valid then

18: return temp_app.xml
19: else

20: break registration_process

21: end if

Algorithm 2. Unitary validation of a manufacturing application entity.

Input: entity

Output: result
 1: // entity_validation method

 2: result ← not_valid

 3: get parent_id and parent_concept of entity
 4: // check if parent_concept exists

 5: if parent_concept in Concepts.xsd then

 6: // check if the parent of entity was previously registered

 7: if parent_id in temp_app.xml then

 8: // check if entity is correct

 9: create entity.xml from entity

10: result ← validate entity.xml against Concepts.xsd

11: end if

12: end if

13: return result

The SA offers a registration API that allows the

Manufacturing Execution System (MES), or other type of

external actors, to register manufacturing applications

through the process described in Algorithm 1. Every time an

application is registered and its correctness is ensured, its

data is stored in the SM. The registration API also offers

another endpoint that is used by the Resource Agents

(representing the equipment needed to perform

manufacturing operations) to register their services in the

SM. When both the manufacturing application and the

Resource Agents are registered, the application is ready to be

started, what leads to the creation of the set of Application

Agents corresponding to each of the entities defined in the

manufacturing application.

In FLEXMANSYS applications are defined by a Hierarchy

of Concepts: Manufacturing Plan, Order and Batch (Fig. 4).

Through proper separation of concerns, FLEXMANSYS

handles the complexity of POM by means of a set of

instances of agents handling those concepts. Thus, the start-

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

up of a manufacturing application leads to the creation of the

Manufacturing Plan Agent (MPA), Order Agent (OA) and

Batch Agent (BA). The agents related to a concept of the

hierarchy are responsible for creating the agents belonging to

the immediate lower level, i.e.: the MPA, creates a set of

OAs, whereas each OA creates a set of BAs.

The OA provides a customer-oriented approach to product

intelligence. Specifically, currently the OA implements

Level-1 of product intelligence by offering an interface to the

customer, so that they can monitor the status of their orders

(McFarlane et al., 2013). On the other hand, the BA accounts

for product intelligence in terms of its aggregation level

(Meyer eta al., 2009), since in many manufacturing contexts

an order is a collection of products that a) are manufactured

in sets (commonly called lots) that must be treated as one;

and b) can be obtained by operating on different sub-products

(McFarlane et al., 2013). Thus, the BA is responsible for the

scheduling of a production lot by defining the operation

sequence that should be performed to different sub-products

in parallel in order to manufacture a product. In addition, the

BA is also responsible for interacting with RAs (machines,

robots) to detect faults, delays, or anomalous situations, and

initiate the subsequent recovery process. Thus, the BA

oversees the traceability of the products, for which it reports

about the relevant manufacturing events to its superior in the

hierarchy, i.e., the OA.

Fig. 4. Hierarchy meta-model of FLEMANSYS made up of

Manufacturing Plan, Order and Batch Concepts.

4. CONCLUSIONS

On the one hand, this article presents a model-based approach

for the definition of manufacturing applications by means of

three XML schemas that provide flexibility in terms of

modification and extension of a) the characterization of

manufacturing concepts, b) the identification of those

concepts, and c) the relations among them. The feasibility of

this approach has been exemplified by modelling an holonic

manufacturing architecture taken from the literature. In

addition, taking advantage of the validation mechanisms of

XML schemas, a registration process is proposed for ensuring

the correctness of the definition of any factory-specific

manufacturing application. This registration process could be

potentially implemented in any agent platform.

On the other hand, this article introduces FLEXMANSYS, a

platform for POM, that currently provides a reusable software

core with an API that a) implements the model-based

approach for the registration of manufacturing applications,

and b) deploys those applications creating the agents

identified by the manufacturing concepts. In order to achieve

POM, in FLEXMANSYS product intelligence is distributed

in two agents, the OA and the BA, that account for customer-

oriented and lot-based product intelligence, respectively.

ACKNOWLEDGMENT

This work was financed by MCIU/AEI/FEDER, UE (grant

number RTI2018-096116-B-I00) and by GV/EJ (grant

number IT1324-19).

REFERENCES

Cruz Salazar, L. A., Ryashentseva, D., Lüder, A., & Vogel-

Heuser, B. (2019). Cyber-physical production systems

architecture based on multi-agent’s design pattern—

comparison of selected approaches mapping four agent

patterns. The International Journal of Advanced

Manufacturing Technology.

Kovalenko, I., Ryashentseva, D., Vogel-Heuser, B., Tilbury,

D., & Barton, K. (2019). Dynamic Resource Task

Negotiation to Enable Product Agent Exploration in

Multi-Agent Manufacturing Systems. IEEE Robotics and

Automation Letters, 4(3), 2854–2861.

Kovalenko, I., Tilbury, D., & Barton, K. (2019). The model-

based product agent: A control oriented architecture for

intelligent products in multi-agent manufacturing

systems. Control Engineering Practice, 86, 105–117.

Leitão, P. (2009). Agent-based distributed manufacturing

control: A state-of-the-art survey. Engineering

Applications of Artificial Intelligence, 22(7), 979–991.

https://doi.org/10.1016/j.engappai.2008.09.005

Leitao, P., & Colombo, A. W. (2006). Petri net based

Methodology for the Development of Collaborative

Production Systems. 2006 IEEE Conference on Emerging

Technologies and Factory Automation, 819–826.

Li, K., Zhou, T., Liu, B., & Li, H. (2018). A multi-agent

system for sharing distributed manufacturing resources.

Expert Systems with Applications, 99, 32–43.

McFarlane, D., Giannikas, V., Wong, A. C. Y., & Harrison,

M. (2013). Product intelligence in industrial control:

Theory and practice. Annual Reviews in Control, 37(1),

69–88.

Meyer, G. G., Främling, K., & Holmström, J. (2009).

Intelligent Products: A survey. Computers in Industry,

60(3), 137–148.

Vrba, P., Tichý, P., Mařík, V., Hall, K. H., Staron, R. J.,

Maturana, F. P., & Kadera, P. (2011). Rockwell

Automation’s Holonic and Multiagent Control Systems

Compendium. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 41(1),

14–30.

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

