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Abstract: Dynamic models of the battery performance are an essential tool throughout the
development process of automotive drive trains. The present study introduces a method making
a large data set suitable for modeling the electrical impedance. When obtaining data-driven
models, a usual assumption is that more observations produce better models. However, real
driving data on the battery’s behavior represent a strongly non-uniform excitation of the system,
which negatively affects the modeling.
For that reason, a subset selection of the available data was developed. It aims at building
accurate nonlinear autoregressive exogenous (NARX) models more efficiently. The algorithm
selects those dynamic data points that fill the input space of the nonlinear model more
homogeneously. It is shown, that this reduction of the training data leads to a higher model
quality in comparison to a random subset and a faster training compared to modeling using all
data points.
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1. INTRODUCTION

1.1 Motivation

The energy storage plays a significant role in the electrifi-
cation of vehicles. Consequently, characterizing and model-
ing the performance of lithium-ion batteries is among the
higher priorities of many car manufacturers. This paper
presents a method to model the nonlinear impedance of au-
tomotive batteries based on real driving data. Such data-
driven models are especially useful in later development
phases.
Ljung (2008) emphasized the role of handling today’s
extensively collected data for dynamic modeling. However,
most publications in the field of system identification still
rely on a design of input signals. The computational effort
and the inhomogeneous excitation are among the reasons
preventing a widespread use of large datasets. Accordingly,
extracting the relevant information from large datasets
has an enormous potential in the context of engineering
models.
This work aims at obtaining nonlinear models based on
large amounts of data from a conventional operation of
the battery system. It further tries to reduce the training
time while simultaneously generating more accurate mod-
els with a space-filling subset selection.

1.2 Related work

Modeling the behavior of automotive batteries usually re-
lies on a fundamental understanding of the electrochemical
phenomena. Most model structures found in literature

capture the basic effects like diffusion and double-layer
capacitance by using equivalent circuit models (e.g. Birkl
(2013)). Some researchers, for example Buller (2003), build
even more detailed models integrating additional aspects
of the voltage response like the Butler-Volmer relation.
Data-driven models have been applied to capture the non-
linear battery dynamics as well, e.g. by Chiasserini (2001)
using Markov chains and by Capizzi (2011) using recur-
rent neural nets. Both authors demonstrate how black-box
models compete with electrochemical models.
There are no recognizable efforts to model the battery dy-
namics based on extensive datasets. In general, studies re-
lated to dynamic modeling still lack efficient algorithms for
pre-processing large amounts of data. They mostly rely on
designed signals like APRBS (Deflorian (2011)) or chirps
(Gokhan (2018)). Large datasets are almost only utilized
for reducing the number of inputs (Schmid (2010)) or
discovering the underlying system order (Brunton (2016).
The mining of important information within data plays a
more significant role in the machine learning and statistics
community. They use well established methods on remov-
ing outliers, selecting relevant information and identifying
patterns in data (Han (2011)). Rennen (2009) for exam-
ple provides an overview on data reduction methods for
Kriging models. He highlights the algorithms, that were
developed to solve the p-dispersion problem of finding a
space-filling subset (Erkut (1990)).
In this context, there are many subset selection methods,
e.g. for linear models (Wang (2019)) or Bayesian system
identification (Green (2015)). Recently, Peter and Nelles
(2019) presented a more holistic approach, which selects
points by targeting an arbitrary probability density func-
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tion of the subset.
The previously discussed algorithms are often exclusive to
a particular modeling process or are only validated with
relatively small datasets. Hence, the obstacle of this work
is an enhancement and combination of those ideas for
nonlinear models based on hours of time series data with
a high sampling rate.

1.3 Example

Modeling a nonlinear function as a black-box is often
done with a uniform excitation generated by a space-
filling design of experiment (DoE). For dynamic systems,
the input space additionally includes delayed values of
all signals. As a result, most measurements taken during
a conventional operation cause a high density close to
system’s equilibrium.
Fig. 1 shows an abstracted example of such a scenario. The
49 points represented by the two variables x1 and x2 are
designed in a space-filling matter using a greedy maximin
algorithm (Steuer (1986)). They are added by 16 points
right next to one of the originals. The variables are part

Original points

Added points

x1

x2

Fig. 1. Uniformly distributed data points with additional
ones in a certain area

of a six-hump camel back function and were used to train
a feedforwad neural net (FNN) with three layers and 22
neurons. 1000 models were obtained based on the original
data points (Model A) and another 1000 models including
the added points (Model B).
This experiment tries to oppose the common intuition that
more data always leads to more accurate models. Using the
Levenberg-Marquart algorithm and a random initialization
for training the FNN, leads to the results in table 1.

Table 1. Results based on two different datasets

NRMSE

(Validation)
NRMSE

(Training) tT [s]

Model A 1.833 0.114 14.267
Model B 2.632 0.116 17.2

The outcome, in regard to a broad validation, shows that
more data added in a relatively small area of the input
space may not only cause longer training times tT , but
generate less accurate models. This comparison is based
on the same validation dataset and the normalized root
mean squared error (NRMSE). One explanation for these

findings is the equal weighting of all data points during
the training. The optimal weights ω and biases b are
determined based on a comparison of the measured output
y(k) with the modeled output ŷ(k) and can be stated as:

min
ω,b

n
∑

k=1

(y(k)− ŷ(k, ω, b))2 (1)

This summation of all squared errors can lead to an in-
accurate representation of the sparser areas and an over-
weighting of dense areas. As a result, Model A performs
better on the validation data.

2. BATTERY MODELING

The electric battery dynamics, defined by the chemical
cell, consist of many nonlinear processes that can lead
to differential equations of high orders. However, the
approximation of the voltage response y in one operational
point with a 4th order linear system is known to be
sufficient for most applications of battery models. Higher
order differential equations clearly indicate a pole-zero
cancellation (Scheiffele (2019)). In addition, Fan (2015)
states that a model order reduction results in an even lower
number of remaining states. The common representation
with two RC circuits is a special 2nd order model and is
used in this study.
For building a discrete battery model, it is important to
consider not only the current u1 as input, but also the
operational point regarding the temperature u2(t) and
state of charge u3(t). When it comes to the voltage output,
Gesner (2019) laid out that modeling the battery dynamics
of purely electric vehicles up to 5Hz is sufficient.
Fig. 2 illustrates the mentioned signals of the electric
battery behavior and defines how the prediction error e of
the NARX model is calculated. This focus on the model’s
one-step prediction in a series-parallel setup is used to
train the nonlinear regressor. In case of a simulation, the
outputs are unknown and the structure is changed to a
parallel setup, which relies on model outputs which are fed
back as new inputs. The figure further illustrates how every
data point of the 7-dimensional input space is mapped to
one output. It thereby contains values of shifted signals
like u1(k − 1) = q−1u1(k). Thus, the following nonlinear
function of x(k) = (u1(k), u1(k − 1), u1(k − 2), u2(k −
1), u3(k − 1), y(k − 1), y(k − 2)) needs to be identified:

ŷ(k) = fFNN (x(k)) (2)

A feedforward neural net (FNN) was chosen for the re-
gression, mainly because of its well established algorithms
when it comes to large amounts of observations. It consists
of three layers and 22 neurons with sigmoid activation
functions. Such a small FNN is used to prevent overfitting
in this study. For determining an optimum of the cost func-
tion (eq. 1) the Levenberg-Marquart algorithm is applied.
In an attempt to make the modeling more comparable,
a stopping criterion was implemented, that depends on a
change of the remaining error over the epochs. If its value
stays within a band of 10−10 over 10 iterations, the training
ends.
Before the actual modeling an anti-aliasing filter excluding
all frequencies above 5Hz is applied. The battery signals
are then down-sampled to 10Hz with a linear interpola-
tion.
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Fig. 2. Prediction error of a NARX (Isermann (2011))

3. SUBSET SELECTION

The amount of data recorded during the development of
a new vehicle is immense. For this study almost 231 h of
driving data are used, which is only a fraction of the data.
Applying the introduced downsampling leads to nall =
8,312,122 discrete time steps for the training.
As it is natural for real driving, most of the available
battery data is concentrated near its equilibrium. The
introductory example in mind (chapter 1.3), those dense
areas can lead to unnecessary long training times and
globally inaccurate models. Hence, there is a need of
reducing the redundancy.
In the context of nonlinear data models, a space-filling
design of the inputs is a regular choice. The idea is to
distribute points as uniformly as possible in any dimension
d. The following measure of coverage λ is one of the
adequate metrics for this criteria:

λ =
1

v

√

√

√

√

1

n

n
∑

i=1

(vi − v)2 (3)

It compares the minimal distance vi = min ‖xi − x‖2
between each point xi and all other points x with the mean
of those distances v. The smaller λ is, the more uniform
becomes the point distribution. Consequently, the metric
is at the core of many algorithms for a space-filling subset
selection.
Considering the 7-dimensional input space (Fig. 2) and
the large number of observations, finding a homogeneous
subset based on λ is computationally intensive. For exam-
ple the greedy maxmin algorithm applied in chapter 1.3
already indicates an exponential time complexity concern-
ing the number of samples.
In this study, an approach is suggested that designs a
space-filling experiment regardless of the recorded data.
Afterwards, the data points closest to the designed points
xDoE are selected. The following generalized steps result

in such a subset containing nsub = αnall points of the
original data:

(1) Normalize nall given data points: xN ∈ (Rd ∩ [0, 1])
(2) Design nDoE(α) = α nall

Vall

uniformly distributed

points in R
d ∩ [0, 1]

(3) Pick their nearest neighbour : min(‖xDoE,i − xN‖2)

Volume Vall, spanned by the measured points in R
7, is

approximated by a convex hull. For the space-filling design
two popular methods were chosen. The Sobol Sequence is
used because of its simplistic calculation and the Latin Hy-
percube Sampling (LHS) because of the ability to generate
a point distribution that is still space-filling in projections
onto its subspaces. For validation reasons, they are added
by a randomly selected subset. Fig. 3 shows a projection of
the data and its subsets onto u3(k), y(k− 1) and y(k− 2).

(a) All data points (b) Random subset

(c) Space-filling subset (LHS) (d) Space-filling subset (Sobol)

Fig. 3. Projection onto a subspace of the inputs

The LHS and Sobol subset, containing 1% of all data
points, achieve a similar space-fillingness of λ ≈ 0.01. In
comparison to the random subsets and the original dataset
with λ ≈ 3.5, the algorithm undoubtedly leads to more
homogeneous data distribution. Computing such a subset
(Sobol) takes about 18 minutes on a Intel(R) Core(TM)
i7-7820HQ CPU with a clock rate of 2.90GHz.

4. RESULTS AND CONCLUSION

To validate the presented space-filling subset selection, two
additional recordings were picked. One of them matches
the probability density function (pdf) of the training data
quite well (Validation 1). The other one (Validation 2)
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is chosen to test the models capability of simulating the
battery’s behavior globally. Its data distribution in the
input space is strongly distinguishable from the training
data set. This comparison was conducted with an estimate
of the pdf using the MATLAB function mvksdensity.
Fig. 4 shows those results of simulating the electric battery
behavior. For the space-filling approach, only the model
trained on the Sobol subset is shown because of illustrative
reasons.

(a) Driving data with a pdf similar to the training

(b) Driving data with a strongly distinguishable pdf from the training

Fig. 4. Comparing simulation performance of the models

The graphs already indicate that the space-filling sub-
set outperforms the random subset regarding validation
datasets. The visual error between the model trained on
all data and the LHS subset is rather small. Note, that
the plotted parts of the driving data do not reflect the
entire performance of the models. Therefore, table 2 states
more precise results, based on three models trained per
dataset. The advantage of a subset selection in terms of

Table 2. Validation results of the model’s performance

NRMSE

(V alidation 1)
NRMSE

(V alidation 2) tT [h]

All data points 0.49 2.43 11.63
Sobol subset 0.52 1.86 1.96
LHS subset 0.67 2.3 1.07
Random subset 1.08 5.9 0.38

training time tT is undeniable. Additionally, the NRMSE,
normalized by the nominal battery voltage, was used as
an error to quantify the model’s performance. Both space-
filling approaches result in more accurate models than the
random subset. Concerning the second dataset (Validation
2), which represents a more unconventional operation of
the battery, a space-filling subset leads to better models
than using all data points.
In conclusion, overweighting some parts of the input space
can cause inaccuracies of the resulting models. This calls

for more research on pre-selecting data in the field of
dynamic system identification.
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