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Abstract: This paper deals with the prediction of highway traffic flow based on historic data. The 

methodology is based on canonical polyadic (CP) tensor decompositions of traffic flow data. This step 

captures the regular elements of the traffic signal based on daily and weekly rhythms and typical 

geographical distributions of the traffic, while significantly reducing the amount of data required to 

describe these. The key factors are then extrapolated into the future, and the traffic data is reconstructed 

from the decomposition. Applied to traffic flow data from the M62 in the North of England in October 

2019, this approach provides a surprisingly accurate prediction based on a very compact model, which is a 

distinct advantage compared to conventional machine learning approaches. Using 4 factors, the prediction 

captures 90% of the signal energy, which beats existing rolling average prediction techniques.  
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1. INTRODUCTION 

On modern motorways and highways, point measurement and 

automatic number place recognition (ANPR) are used to 

constantly monitor traffic density and speed as part of a 

highway management strategy. This data is used for setting 

speed limits, predicting journey times, informing route 

planners, schedule maintenance, analyse highway safety, and 

plan future investments into the highway infrastructure. Many 

of these uses require predictions of future traffic flows based 

on historical data. This paper proposes a novel approach to the 

prediction based on a tensor analysis of the traffic data. 

Tensor analysis is a generalisation of matrix analysis, and it is 

based on a multi-dimensional view of the data. Let T be a four-

dimensional tensor in the dimensions 𝑖, 𝑗, 𝑘, and 𝑙 of size 

𝑇 ∈ ℝ 𝑛𝑖 × 𝑛𝑗 × 𝑛𝑘 × 𝑛𝑙 

with 𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙 real-valued elements denoted by 𝑡𝑖,𝑗,𝑘,𝑙. 

The canonical polyadic decomposition (CPD) of this tensor is 

a generalisation of the singular value decomposition (SVD), 

and it approximates the tensor using 𝑛 factors defined by 4 

vectors 𝑎, 𝑏, 𝑐, 𝑑 and a scaling factor 𝜆 each (one vector for 

each dimension of the tensor): 

𝑡𝑖,𝑗,𝑘,𝑙 = ∑ 𝜆𝑚
𝑛
𝑚=1 𝑎𝑚,𝑖𝑏𝑚,𝑗𝑐𝑚,𝑘𝑑𝑚,𝑙   (1) 

The 𝑛 vectors are typically stored in matrix form, leading to 

four matrices 𝐴, 𝐵, 𝐶, and 𝐷 with respective dimensions 

(Kolda and Bader 2009). 

This is called a rank 𝑛 decomposition. Like the SVD, it is 

usually able to capture most of variability of a structured tensor 

in a low rank, requiring significantly less storage space. Unlike 

the SVD, finding the CPD is not a convex optimisation 

problem: several different algorithms exist to find numerical 

approximations of the optimal decomposition and toolboxes 

are available (www.tensorlab.net, www.tensortoolbox.org). 

Remark: In contrast to matrix SVD, which always can be 

truncated to find a lower rank SVD, this is in general not 

possibly for a tensor CPD, where truncating factors of higher 

ranks give much poorer results than a CPD with a lower rank. 

The paper is organised as follows: Section 2 presents a brief 

overview of existing approaches, Section 3 defines the 

research question, Section 4 details the methodology, and 

Section 5 shows the numerical results, leading to the 

conclusions in Section 6.  

2. BACKGROUND 

2.1  Tensor Analysis 

Tensor analysis has been successfully used in a number of 

areas where the data can be easily represented in multiple 

dimensions. A typical example is calendar based data, which 

is subject to daily, weekly, and annual cycles.  

An example of a similar analysis is presented in (Sewe 2017), 

where the heating energy demand of a building is analysed for 

the purpose of fault detection.  
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The canonical polyadic decomposition (CPD) is the main 

analysis tool, and it is similar to the singular value 

decomposition (SVD) or principal component analysis (PCP) 

for 2 dimensional data. Other decompositions exist, most 

notably the Tucker decomposition and the tensor train (TT) 

decomposition (Li 2019).  

Applications for tensor analysis are like the PCP, and they 

include the visualisation and understanding of large datasets, 

data reduction, clustering, prediction, categorisation and fault 

detection, as well as the restauration of incomplete data.  

2.2  Traffic Flow Prediction 

The prediction of traffic flow data is an important question for 

the management of traffic and the calculation of optimal 

routes. Unlike the prediction of energy demand (Mody 2017), 

traffic is a strongly localised phenomenon, and therefore the 

amount of available data is significantly higher.  

There is a good amount of literature, but it focuses on a few 

common approaches, such as regression (Wu 2015), 

autocorrelation (Kumar 2015) and deep neural networks 

(Huang 2014, Lv 2015). The research for traffic analysis in 

computer networks is much wider (e.g. Joshi 2015).  

3. RESEARCH QUESTION 

The aim of this paper is to produce a prediction of the traffic 

on a highway based on historical data. In other words, a model 

of the traffic data is to be created, which can then be used to 

extrapolate from known data into the future.  

The model is typically an abstraction and achieving the right 

level of abstraction can be critical for a good prediction. Too 

detailed a model may not generalise well (overfit). If the model 

is too coarse, it cannot adequately describe the behaviour in 

the first place (underfit). Identifying the best level of 

abstraction is part of the research question.  

4. METHODOLOGY 

The data used here is from the M62 motorway in the North of 

England, from 1 October 2019 to 28 October 2019 in 15 

minute long intervals. It can be found on the webtris system 

(highways england 2019). This data is given as the number of 

passing cars per hour. The same methodology should be 

applicable to any set of traffic data.  

The traffic flow data is partitioned into a training data set and 

a verification data set (both two weeks). To maintain causality, 

the learning data set is before the verification data set.  

The original data is presented as a matrix, where the first 

dimension is the location of the measurement, and the second 

dimension the time in regular intervals. This is reformatted as 

a tensor, with the following four dimensions: 

1. 𝑛𝑖 = 150 locations 

2. 𝑛𝑗 = 96 periods during a day (24 hours, 4 per hour) 

3. 𝑛𝑘 = 7  days in a week starting Wednesday (1.10.19) 

4. 𝑛𝑙 = 2  weeks (of the training data) 

The CPD is performed in MATLAB, using the cpd function 

from the tensorlab toolbox version 3 (Vervliet 2016). The 

follow code explains this key step: 

T=reshape(D,[150 96 7 2]); % rearrange as tensor  

Tcpd=cpd(T,7);   % perform a rank 3 decomposition 

Tgen=cpdget(Tcpd);  % restore from the decomposition 

The tensorlab toolbox does not use the factor 𝜆, which is 

assumed to be one, and instead includes this factor in the 

vectors. To the make results easier to interpret, the vectors are 

normalised, and 𝜆 is calculated according to equation (1). This 

makes no difference to the model, but it simplifies the analysis.  

The tensor is reconstructed from the decomposition and 

compared to the original. The mean square error (MSE) is 

calculated as a measure of quality of the approximation, to 

measure whether the data has been captured in the 

decomposition.  

To generate the prediction, the vector 𝑑 needs to be extended 

from the 2 weeks of the training dataset to cover the additional 

2 weeks of the verification data set. The average of the 2 

training weeks is filled in.  

A better prediction at this point would be desirable, e.g. using 

context information or data from the previous year. Obviously, 

the best data would be the verification dataset itself, but this 

cannot be used without violating the causality of the 

prediction. The reconstruction of the extended tensor 

decomposition is then compared against the verification 

dataset. The full code is available on github (Steffen 2020). 

5. RESULTS 

Figure 1 shows a carpet plot of the original traffic data, with 

location on the vertical and time on the horizontal axis. The 

daily and weekly rhythm is clearly visible in the plot. The 

striking orthogonal features of this plot indicate that it is highly 

structured and suitable for a decomposition along the 

dimensions. The left half of this plot is the training data, and 

the right half is the verification dataset. The full dataset 

consists of 403200 values, with 2093 missing values, an 

average of 458.6, and a standard deviation of 374.6.  

Figure 2 shows the components found by CPD with rank 7. 

This represents the 150*96*7*2=201600 data points from the 

training set using only 7*(150+96+7+2)=1785 values. Several 

components are very similar, and they cancel each other out to 

some degree. Note that the weekly factors are set to 1 for Week 

3 and 4, because those are extrapolated, as only Week 1 and 2 

are used for training.  

Figure 3 shows the reconstructed traffic data, and Figure 4 

shows the absolute error. The errors are generally small, with 

deviations being quite localised. The longest deviation is 

around location 90 at time step starting from 1500. The 

deviation is negative (less traffic than predicted), it last for  
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Fig. 1. Carpet Plot of the Original Traffic Data 

 

Fig. 2. Components of the Canonical Polyadic 

Decomposition  

most of the day, and it aligns with recorded road works, so it 

is reasonable to assume that it is caused by a traffic jam forcing 

road users onto a diversion route.  

To assess the quality of the tensor model, the root mean square 

error (RMSE) for the training and the validation data set are 

plotted over the CPD rank in Figure 5. As expected, the 

training error reduces with increasing rank, but the validation 

error seems to level off from around rank 7, with a good 

prediction reached from rank 3. This indicates that overfitting 

may be happening from about rank 10, and for the 

demonstration, the rank 7 was used as a compromise between 

prediction quality and complexity.  

For comparison, the graph also contains the RMSE for a 

prediction based on the average weekly profile from the 

training set (the average of Week 1 and 2). These are  

 

Fig. 3. Carpet Plot of the Reconstructed Traffic Data 

 

Fig. 4. Absolute Error of the Reconstructed Traffic Data 

representative of a conventional regression or filtering 

approach and are shown as horizontal dashed lines in the 

graph. It is remarkable that the tensor decomposition achieves 

a better prediction with a much lower amount of data. This is 

presumably because the tensor decomposition can find basic 

recurrent structures of the data – due to reasonably chosen 

dimensions – and creates an abstract model that covers typical 

behaviour but ignores minor abnormalities in the data.  

Even better predictions should be possible if a prediction of 

the weekly factors (the second half of the last graph from 

Figure 2) is added, for example based on external factors. 

Further tensorization, i.e. finding more than 4 dimensions, e.g. 

splitting the time to two dimensions hour of the day and quarter 

of the hour could improve the compression factors but will not 

lead to improved errors because in traffic, there is nothing 

special e.g. about 15 min past the hour in contrast to 30 min 

past the full hour. 

Finally, Figure 6 shows the autocorrelation of the original 

traffic data, and the autocorrelation of the prediction error.  
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Fig. 5. Prediction Error by Week over CPD Rank  

(horizontal lines denote averages for comparison) 

 

Fig. 6. Autocorrelation of the Original Flow Data and the 

Prediction Error 

This shows that the prediction is successful, and the 

correlation of the prediction error is remarkable short.  

Further research should investigate the stochastic behaviour 

of this deviation and create an observer that allows real time 

traffic prediction based on the prediction and a model of the 

error fed by real time traffic data.  

6. CONCLUSIONS 

This paper shows that traffic flow data can be analysed using 

a tensor decomposition. Even a low rank decomposition 

captures a large share of the data, and it can be used to 

compress the data, analyse the data, highlight deviations from 

nominal situations, and to predict future traffic. This prediction 

is superior to a more data insensitive filtering approach, 

because it manages to separate a regular component of the data 

from irregular occurrences. It is therefore a worthwhile 

alternative or addition to a conventional machine learning 

regression model or a moving average or recursive filter.  

The improved prediction has far ranging applications in traffic 

management, traffic control, maintenance schedule, and route 

planning that may affect all traffic participants. Further work 

is required to study these applications in detail, and the 

applicability to wider datasets.  
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