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Abstract: In this paper, a dynamical transportation problem over the graph is discussed.
Over the graph, multiple agents transport their assets to goals. In transportation, all agents
share capacities of nodes and edges. The dynamical transportation problems are formulated
as an optimization problem such that the total transportation time is minimized by using
finite optimal control problems. The optimization problem is dispersively solved by using the
alternating direction method of multipliers.
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1. INTRODUCTION

Internet of Things (IoT) is a concept which means that
anything can be connected via the Internet. In an IoT
society, a large amount of information is collected from
physical space into cyberspace. The collected information
is then analyzed to create added value. Finally, these re-
sults are utilized in physical space to provide smarter social
services, for example, smart grids and smart cities (Cas-
sandras (2016)). An intelligent transport system (ITS)
is one of these smart systems in which IoT technologies
will improve transport efficiency and comfortableness. In
the ITS, traffic conditions are updated in real-time, and
drivers can make rational decisions based on that informa-
tion. As a result, we can expect that traffic congestion is
resolved.

Due to the above background, many works have focused
on analysis and control of traffic flow of the transportation
network, for example, Pham et al. (2019); Dotoli and
Fanti (2006); De Nunzio et al. (2016); Daganzo (1994,
1995); Moore et al. (2004); Como et al. (2012); Coogan
and Arcak (2014); Ba et al. (2015); Hilliges and Weidlich
(1995); Davidsson et al. (2005). In these works, some
transportation models, for example, Petri net and a cell
transmission model (CTM), are proposed to represent the
transportation dynamics. Based on these models, the past
works have aimed to minimize the global cost of the whole
network while satisfying some constraints such as speed
limitation and traffic capacity.

However, these works do not consider the problem that
multiple agents move their assets to different destinations
in minimum time. In actual transportation systems, many
agents have different destinations. One of the most com-
mon objectives of these agents is to move the assets to the
destination in minimum time. In this case, the cooperation
of all agents is difficult because the objectives of agents

conflict. Therefore, to reconcile these agents, we require an
aggregator. The aggregator leads all agents into minimiz-
ing global costs. In the process of minimizing global cost,
Each agent communicates only with the aggregator. The
aggregator is prohibited from providing the information of
each agent to the other ones.

To satisfy the above specifications for the aggregator, we
solve the dynamical transportation problem over graphs
based on a distributed optimization algorithm. Follow-
ing Pham et al. (2019), the dynamical transportation net-
work in this work is modeled by mathematical graph and
CTM. The dynamics of the assets of each node are defined
by CTM. Increments and decrements of these amounts
which are associated with each node are defined by in-
flow and out-flow, respectively. To design a schedule such
that the agent transports all assets to the destination
in minimum time, we utilize a linear objective function.
Then, the problems of this work result in finite-time opti-
mal control problems. By introducing some new variables,
these problems are transformed into separable problems in
the sense of an alternating direction method of multipliers
(ADMM).

2. PROBLEM FORMULATION

A mathematical model of the network is given by a con-
nected directed graph G := (V, E). The set V := {1, . . . , n}
represents a node set whose elements are segments of a
route. A set of edges are defined by E ⊆ V × V, where
(i, j) ∈ E indicates that each agent can transport own
asset from i-th to j-th node. The cardinality of E is given
by m. We define Oi := { j : (i, j) ∈ E} as set of out-flow
neighbors and Ii := { j : (j, i) ∈ E} as set of in-flow
neighbors.

Let us consider the agents that have the assets in the nodes
of G. The set of agents are defined as A := {1, . . . , N}. The
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agent i ∈ A has the assets xi[k] :=
[
xi
1[k], . . . , x

i
n[k]

]⊤ ∈
Rn

+, where xi
j [k] ∈ R+ indicates an amount of the asset in

node j ∈ V at time k.

Each agent transports own assets along the edges of G. A
transportation amount on the edge (j, l) ∈ E by the agent
i ∈ A at time k is defined as ui

(j,l)[k] ∈ R+. Based on

this transportation amount, in-flow and out-flow in j-th
node by the agent i at time k are respectively expressed
by f i

j [k] =
∑

l∈Ij
ui
(l,j)[k] and gij [k] =

∑
l∈Oj

ui
(j,l)[k]. The

above is summarized in dynamics with respect to xi
j [k] as

follow:

xi
j [k + 1] =xi

j [k] + f i
j [k]− gij [k]

=xi
j [k] +

∑
l∈Ij

ui
(l,j)[k]−

∑
l∈Oj

ui
(j,l)[k].

(1)

Because the out-flow is smaller than the amount of the
asset which is stored in a source,

xi
j [k] ≥ gij [k] =

∑
l∈Oj

ui
(j,l)[k] (2)

is required. From (1) and (2), the dynamics with respect
to xi[k] is expressed by

xi[k + 1] = xi[k] + (Bin −Bout)u
i[k]

xi[k] ≥ Boutu
i[k],

(3)

where B = Bin − Bout is an adjacency matrix of G and
Bin ≥ 0 and Bout ≥ 0 are satisfied.

Let us consider capacities of the nodes and the edges on
the graph G. Assume that the node can not store the assets
more than bx ∈ Rn

+, and the transportation amounts of the
edges per one discrete-time are limited by bu ∈ Rm

+ . These
are the constraints with respect to all agents and can be
formulated as:

N∑
i=1

xi[k] ≤ bx, (4)

N∑
i=1

ui[k] ≤ bu. (5)

For the system, initial conditions xi[k] and a set of collec-
tion nodes Vi

g ⊆ V for all i ∈ A are given. The objective of
the agent i is to transport the all assets to the collection
nodes, which means that limτ→∞ xi

j [k + τ ] = 0 for all

j ∈ V \ Vi
g. If the agent i accomplished this objective,

we call “The agent i completed the transportation.” In
this paper, we find the transportation schedule which
minimizes the time such that the all agents complete the
transportation. To simplify the problem, we consider the
case that A = {1}. Then, the problem is summarized as
follows.

Problem 1. For given x1[k], G, V1
g , (4) and (5), find

u1[k], . . . , u1[k+τ ] and minimum τ such that x1
j [k+τ ] = 0

for all j ∈ V \ V1
g .

Next, we consider the general problem. Due to the ca-
pacity of the nodes and edges, the minimization of the
transportation time of each agent is not satisfied at the
same time. Therefore, to reconcile the agent and realize
the minimization of transportation time for all agents,
we consider a distributed optimization problem. In the

distributed optimization, the agent i calculates a candidate
of the schedule Xi[k]t := [xi[k + 1]⊤t , . . . , x

i[k + τ ]⊤t ]
⊤

and U i[k]t := [ui[k]⊤t , . . . , u
i[k + τ − 1]⊤t ]

⊤. To satisfy
constraints (4) and (5), we introduce an aggregator. The
aggregator collects the candidate schedule and returns
amounts of correction Zi[k]t := [zi[k]⊤t , . . . , z

i[k + τ ]⊤t ]
⊤.

Based on the amounts of correction, each node updates its
own schedule. The problem in which we find the agent’s
schedule from the iteration of the above is summarized as
follows.

Problem 2. For given xi[k], G, Vi
g, (4) and (5), find mini-

mum τ and the algorithm

(Xi[k]t+1, U
i[k]t+1) = fi(Z

i[k]t),

(Z1[k]t+1, . . . , Z
N [k]t+1) = g(X1[k]t, . . . , X

N [k]t,

U1[k]t, . . . , U
N [k]t)

such that xi
j [k + τ ]t = 0 for all j ∈ V \ V1

g as t → ∞.

3. PROPOSED METHOD

3.1 Single-Agent Case

In this subsection, we consider the transportation problem
when N = 1. To simplify the notation, we omit the index
which indicates the agent. A predictive horizon for the
finite-time optimal control is defined by T . Note that to
obtain the solution of Problem 1, T should be sufficiently
large because T ≥ τ is required. The extended state X[k]
which include all x[k̄], k̄ ∈ {k + 1, . . . , k + T} are defined
by

X[k] := [x[k + 1]⊤, x[k + 2]⊤, . . . , x[k + T ]⊤]⊤ ∈ RnT
+ .

In the above way, an extended input are defined by

U [k] = [u[k]⊤, u[k + 1]⊤, . . . , u[k + T − 1]⊤]⊤ ∈ RmT
+ .

Following the dynamics (1), X[k] and U [k] are expressed
by

X[k] = ĀX[k] + B̄U [k] +X0[k]

ĀX[k]− B̄out ≥ X0[k],
(6)

where Ā, B̄, B̄out and X0[k] are given by

Ā =


0 · · · 0
In

. . .
...

In 0


B̄ = IT ⊗ (Bin −Bout)

B̄out = IT ⊗Bout

X0[k] = [x[k]⊤, 0⊤, . . . , 0⊤]⊤.

To find U [k] which is a solution of Problem 1, a linear
objective function V (X[k]) is introduced as

V (X[k]) := c̄⊤X[k] =

T∑
j=1

v(x[k + j]) (7)

v(x[k + j]) = c⊤x[k + j] (8)

where

c̄ = 1T ⊗ c , [c]i =

{
0 if i ∈ Vg

1 otherwise
.

A total amount of the asset 1⊤T x[k + k′] for all k′ ∈
{1, . . . , T} is time-invariant. Therefore, v(x[k + k′]) = 0
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if and only if the agent completes the transportation, and
we can obtain the following equation:

c⊤x[k + k′]− 1⊤T x[k + k′]

=

{
0 if xi[k + k′] = 0 for all i ∈ Vg

negative values otherwise
.

From above discussion, to decrease the objective func-
tion (7), the agent should move the assets to the collection
nodes. Therefore, we can find U [k] which is a solution of
Problem (9) from the following optimization problem:

given X0[k]

find X[k], U [k]

minimize V (X[k])

subject to X[k] = ĀX[k] + B̄U [k] +X0[k]

ĀX[k]− B̄outU [k] ≥ X0[k]

0 ≤ X[k] ≤ b̄x , 0 ≤ U [k] ≤ b̄u

(9)

where b̄x and b̄u is given by

b̄x = 1T ⊗ bx and b̄u = 1T ⊗ bu.

The above is summarized by the following Theorem.

Theorem 1. From the solution of (9), we obtain U [k] and
the minimum τ such that∑

i∈V\Vg

xi[k + τ ] = c⊤x[k + τ ] = 0.

Proof 1. An exact proof is omitted in this paper.

3.2 Multi-Agent Case

In this subsection, let us formulate the optimization prob-
lem in which agents transport their assets on the shared
graph. Based on (7), the objective function which is opti-
mized by the agent i is expressed by

V i(Xi[k]) := c̄⊤i X
i[k]

c̄i = 1T ⊗ ci , [ci]j =

{
0 if j ∈ Vi

g

1 otherwise
.

Based on V i(Xi[k]), a global objective function is defined
by

V (X1[k], . . . , XN [k]) :=

N∑
i=1

V i(Xi[k]).

Therefore, the optimization problem for the agents to
minimize a transportation time is formulated as follows:

given X1
0 [k], . . . , X

N
0 [k] (10a)

find X1[k], . . . , XN [k], U1[k], . . . , UN [k] (10b)

minimize V (X1[k], . . . , XN [k]) (10c)

subject to Xi[k] = ĀXi[k] + B̄U i[k] +Xi
0[k] (10d)

ĀXi[k]− B̄outU
i[k] ≥ Xi

0[k] (10e)

0 ≤ Xi[k], 0 ≤ U i[k] (10f)
N∑
i=1

Xi[k] ≤ b̄x ,

N∑
i=1

U i[k] ≤ b̄u (10g)

We dispersively solve (10) by using the ADMM. To utilize
the ADMM, we transform (10) to a separable formulation.
First, we introduce indicator functions to reduce the

constrains from (10d) to (10g). Let us define the set Ci[k]
which indicates the constrains (10d), (10e) and (10f) as

Ci[k] := {(Xi, U i) : Xi ≥ 0 , U i ≥ 0,

ĀXi − B̄outU
i ≥ Xi

0[k]

Xi = ĀXi + B̄U i +Xi
0[k]}.

This is independent constraints among agents. By using
Ci[k], the indicator function is defined by

hi(Xi[k], U i[k]) :=

{
0 if (Xi[k], U i[k]) ∈ Ci[k]

∞ otherwise

On the other hand, the indicator functions which are
associated with (10g) are defined by

hx(X
1[k], . . . , XN [k]) :=

{
0 if

∑N
i=1 X

i[k] ≤ b̄x
∞ otherwise

,

hu(U
1[k], . . . , UN [k]) :=

{
0 if

∑N
i=1 U

i[k] ≤ b̄x
∞ otherwise

.

To solve (10) by using the ADMM, we introduce slack
variables Zi

x[k] and Zi
u[k] such that

Xi[k] = Zi
x[k] , U i[k] = Zi

u[k].

Based on the indicator functions and the slack variables,
(10) can be transformed to the following problem:

given X1
0 [k], . . . , X

N
0 [k]

find X̄[k], Ū [k], Z̄x[k], Z̄u[k]

minimize V̄ (X̄[k], Ū [k], Z̄x[k], Z̄u[k])

subject to X̄[k] = Z̄x[k] , Ū [k] = Z̄u[k]

(11)

where X̄[k], Ū [k], Z̄x[k], Z̄u[k] and V̄ are given by

X̄[k] := [X1[k]⊤, . . . , XN [k]⊤]⊤,

Ū [k] := [U1[k]⊤, . . . , Y N [k]⊤]⊤,

Z̄x[k] := [Z1
x[k]

⊤, . . . , ZN
x [k]⊤]⊤,

Z̄u[k] := [Z1
u[k]

⊤, . . . , ZN
u [k]⊤]⊤,

and
V̄ (X̄[k], Ū [k], Z̄x[k], Z̄u[k])

:=

N∑
i=1

(V i(Xi[k]) + hi(Xi[k], U i[k]))

+ hx(Z
1
x[k], . . . , Z

N
x [k])

+ hu(Z
1
u[k], . . . , Z

N
u [k]).

To solve the optimization problems by using the ADMM,
an augmented Lagrangian function is required. Let us
define Y i

x [k] ∈ RnT and Y i
u[k] ∈ RmT as dual variables.

By using Y i
x [k] and Y i

u[k], Ȳx[k] and Ȳu[k] are defined by

Ȳx[k] := [Y 1
x [k]

⊤, . . . , Y N
x [k]⊤]⊤,

Ȳu[k] := [Y 1
u [k]

⊤, . . . , Y N
u [k]⊤]⊤.

The augmented Lagrangian function which is associated
with (11) is given by

Lρ(X̄[k], Ū [k], Z̄x[k], Z̄u[k], Ȳx[k], Ȳu[k]) :=
N∑
i=1

Li
ρ(X

i[k], U i[k], Zi
x[k], Z

i
u[k], Y

i
x [k], Y

i
u[k])

+ hx(Z̄x[k]) + hu(Z̄u[k]),

(12)
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where augmented Lagrangian function of the agent i is
expressed by

Li
ρ(X

i[k], U i[k], Zi
x[k], Z

i
u[k], Y

i
x [k], Y

i
u[k])

:= V i(Xi[k])

+
ρ

2
∥Xi[k]− Zi

x[k] + Y i
x [k]∥2

+
ρ

2
∥U i[k]− Zi

u[k] + Y i
u[k]∥2

(13)

and ρ > 0 is a penalty parameter.

Based on the augmented Lagrangian function, we divide
an ADMM based iteration algorithm to find a solution
of (11). Candidate solutions of Xi[k], U i[k], Zi

x[k], Z
i
u[k],

Y i
x [k] and Y i

u[k] are defined by Xi[k]t, U i[k]t, Zi
x[k]t,

Zi
u[k]t, Y

i
x [k]t and Y i

u[k]t, respectively. Due to the formu-
lation of (12), each agent can update the state Xi[k]t, the
input U i[k]t and the dual variables Y i

x [k] and Y i
u[k]. On the

other hand, the slack variables Zi
x[k]t and Zi

u[k]t should be
updated by the aggregator.

Each agent receives Zi
x[k]t and Zi

u[k]t from the aggregator,
and updates Xi[k]t and U i[k]t as

(Xi[k]t+1, U
i[k]t+1) =

arg min
X,U

Li
ρ(X,U,Zi

x[k]t, Z
i
u[k]t, Y

i
x [k]t, Y

i
u[k]t).

(14)

Therefore, the update law (14) results in the following
quadratic programming:

given Xi
0[k], Z

i
x[k]t, Z

i
u[k]t, Y

i
x [k]t, Y

i
u[k]t, ρ

find Xi[k]t+1, U
i[k]t+1

minimize c̄⊤i X
i[k]t+1 +

ρ

2
∥Xi[k]t+1 − Zi

x[k]t + Y i
x [k]t∥2

+
ρ

2
∥U i[k]t+1 − Zi

u[k]t + Y i
u[k]t∥2

subject to Xi[k]t+1 = ĀXi[k]t+1 + B̄U i[k]t+1 +Xi
0[k]

ĀXi[k]t+1 − B̄outU
i[k]t+1 ≥ Xi

0[k]

0 ≤ Xi[k]t+1, 0 ≤ U i[k]t+1

(15)

The update law of the dual variables are given by

Y i
x [k]t+1 = Y i

x [k]t +Xi[k]t+1 − Zi
x[k]t,

Y i
u[k]t+1 = Y i

u[k]t + U i[k]t+1 − Zi
u[k]t.

(16)

The aggregator collects X[k]t+1, U [k]t+1, Yx[k]t+1 and
Yu[k]t+1 from the all agents. From these values, the slack
variables are updated as follows:

(Zx[k]t+1, Zu[k]t+1) =

arg min
Zx,Zu

Li
ρ(X[k]t+1, U [k]t+1, Zx, Zu,

Yx[k]t+1, Yu[k]t+1)

(17)

Therefore, the update law (17) results in the following
quadratic programming:

given X̄[k]t+1, Ū [k]t+1, Ȳx[k]t+1, Ȳu[k]t+1

find Z̄x[k]t+1, Z̄u[k]t+1

minimize ∥X̄[k]t+1 − Z̄x[k]t+1 + Ȳx[k]t+1∥2

+ ∥Ū [k]t+1 − Z̄u[k]t+1 + Ȳu[k]t+1∥2

subject to

N∑
i=1

Zi
x[k]t+1 ≤ b̄x ,

N∑
i=1

Zi
u[k]t+1 ≤ b̄u

(18)

By introducing the dual and slack variables, the dynam-
ical transportation problems with minimum time (10) is
transformed into the problem that we can solve by using
the ADMM (11). Threfore, from the iteration of (15), (16)
and (18), we can obtain the optimal solution Xi

∗[k] and
U i
∗[k] of (10) as

lim
t→∞

Xi[k]t = Xi
∗[k] and lim

t→∞
U i[k]t = U i

∗[k].

4. CONCLUSION

In this paper, a dynamical transportation over a graph
has been solved as a finite-time optimal control problem.
To minimize the transportation times, a linear objective
function has been utilized. When multi-agents transport
the asset on the shared graph, the optimization problem
has been dispersively solved by the ADMM.
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