
Continuous-Time Accelerated Algorithm
for Distributed Optimization over

Undirected Graph

Ismi Rosyiana Fitri, Jung-Su Kim∗

Department of Electrical and Information Engineering, Seoul National
University of Science and Technology, Seoul 01811, Korea e-mail:

jungsu@seoultech.ac.kr.

Abstract: This paper investigates a distributed optimization problem for a group of agents
where the objective function is the sum of convex local functions associated with the individual
agents on connected and undirected graph topologies. Inspired by the discrete-time accelerated
gradient algorithm for solving a centralized optimization problem, this paper designs a
continuous-time algorithm for solving the distributed optimization problem. By using a standard
Lyapunov analysis, it is proved that the proposed method converges exponentially to the optimal
solution when the local costs are strongly convex with a local Lipschitz gradient. Furthermore,
it is also shown that faster convergence could be easily achieved by increasing one design
parameter. Numerical simulations illustrate the result.
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1. INTRODUCTION

Distributed optimization is gaining more popularity due to
its variety of applications such as the economic dispatch
problem in power systems, utilization maximization in
communication networks, and robust estimation in wire-
less sensor networks, e.g., Rabbat and Nowak (2004); Ram
et al. (2010); Cherukuri and Cortes (2015). The majority
of existing algorithms are written in the discrete-time
setting, e.g., Johansson et al. (2010); Nedic and Ozdaglar
(2009); Boyd et al. (2011). Meanwhile, the continuous-time
strategies are also studied over the past few years, see the
study by Gharesifard and Cortes (2014), Kia et al. (2015),
and Li et al. (2018). In this paper, we are interested in
investigating more about a continuous-time coordination
algorithm for distributed optimization.

Most of the algorithms on distributed optimization with
the continuous-time setting fall under the class of first-
order optimizers. For instance, in Gharesifard and Cortes
(2014), the original unconstrained distributed optimiza-
tion problem is viewed as a constrained one due to the
consensus requirement. With the constrained problem in
mind, a saddle point algorithm is used to find the optimal
solution. Furthermore, it is extended by Kia et al. (2015)
to reduce the number of exchanged variables between the
two agents. The other algorithms, such as in Li et al.
(2018), can also be seen as the corresponding gradient
descent in a distributed optimization setting. Although
the performance of gradient descent optimizers is gen-
erally effective, it is highly dependent on the curvature
of the optimization objective. It is well known within
the optimization community that the convergence rate of
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the gradient descent algorithm can become slow if the
objective function exhibits pathological curvature, Song
et al. (2018). In order to improve the convergence property,
Newton’s method, such as in Varagnolo et al. (2016), can
be adopted since not only the first-order derivative but
also the second-order one is taken into account. However,
the algorithm is computationally demanding since it is
required to know the Hessian of the objective function.
In the discrete-time setting, a method called momentum
gradient algorithm proposed by Polyak (1964) is popularly
used, especially in neural network literature, for solving a
centralized optimization problem with faster convergence.
This algorithm works by considering the derivative of the
current and previous steps in every iteration. Another
method closely related to the momentum algorithm is the
accelerated gradient by Nesterov (1983). For a long time,
this algorithm is written in discrete-time. It is only recently
that Wilson et al. (2016) and Wibisono et al. (2016)
investigate the algorithm in a continuous-time setting such
that the Nesterov gradient method can be recovered by a
careful discretization of an ordinary differential equation.
Inspired by this, a continuous-time algorithm for solving
a distributed optimization problem is proposed in this
paper.

The contribution of this paper is as follows. We first pro-
pose a novel continuous-time coordination algorithm for a
distributed optimization. Then, we study the convergence
property under a connected and undirected graph. By
using the standard Lyapunov theory, it is proved that
the algorithm converges exponentially fast to the optimal
point. Moreover, compared to the existing algorithms, it
is shown that the proposed method provides a simple way
to improve, i.e. to accelerate, the convergence property of
the algorithm. Finally, numerical simulations are used to
validate the proposed method.
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Fig. 1. Communication graph among agents

2. NOTATION AND PRELIMINARIES

Let R, Rn, and R>0 be the sets of real numbers, real vec-
tors of dimension n, and positive real number, respectively.
For vectors a1, . . . ,am, a = (a>1 , . . . ,a

>
m)> is the aggregate

vector. The transpose of a matrix A is A>. The identity
matrix with dimension n is denoted by In. We use 1n
(resp 0n) to represent a vector of n ones (resp. n zeros).
For A ∈ Rn×m and B ∈ Rp×q, (A ⊗ B) denote their

Kronecker product. For a vector a ∈ Rn, ‖a‖ =
√
a>a

is the Euclidean norm of a. For a differentiable function
f : Rn → R, ∇f is the gradient of f . A differentiable
function f is µ-strongly convex over a convex set C ⊆ Rn
iff there exists µ ∈ R>0 such that (x − y)>(∇f(x) −
∇f(y)) ≥ µ‖x−y‖2 for all x,y ∈ C and x 6= y. A function
f is locally Lipschitz at x ∈ Rn iff there exist M ∈ R≥0
such that ‖f(x)−f(y)‖ ≤M‖x−y‖, for x,y ∈ W, where
W denotes the neighboring set of x. For a convex function
f with M -Lipschitz gradient, ‖∇f(x)−∇f(y)‖2 ≤M(x−
y)>(∇f(x)−∇f(y)).

An undirected graph G consists of a node set V =
{1, 2, . . . , n} and unordered edge set E ⊆ V × V where
self loop (i, i) is excluded. The set of neighbors of node
i is denoted by Ni = {j}, j ∈ V, (j, i) ∈ E . The graph
G is connected if there exists a path between any pair of
distinct nodes. A weighted adjacency matrix A = [aij ] ∈
Rn×n with aij = aji and aij > 0 if only if (i, j) ∈ E .
The Laplacian matrix is defined as L = D − A, where
D = diag(di), and di =

∑
j∈Ni

aij . For connected graph,
the eigenvalues of L satisfy λ1 ≤ . . . ≤ λn, where λ1 = 0.

3. PROBLEM STATEMENT AND PROPOSED
ALGORITHM

3.1 Problem Formulation

Consider the following problem

min
x∈Rd

f(x) =

N∑
i=1

fi(x), (1)

where i represents the index of an agent. Here, it is
assumed that each agent has a convex local cost function
fi : Rd → R. The objective of this paper is to design
an algorithm in a continuous-time to solve this problem
in a distributed manner. Furthermore, suppose that the
following assumption is true.

Assumption 1. Each fi, i = 1, 2, . . . , N is continuously
differentiable, µi-strongly convex, and its gradient is Mi-
Lipschitz on Rd. The communication graph G is undirected
and connected.

Owing to Assumption 1, the problem (1) can be rewritten
as

min
xi,i=1,...,N

f(x)=

N∑
i=1

fi(xi) subject to (L⊗ Id)x = 0, (2)

where xi ∈ Rd is the variable of the ith agent and
x = [x>1 , . . . ,x

>
N ]> ∈ RdN is the network variable.

3.2 Proposed Distributed Algorithm via Continuous-Time

In this section, the proposed continuous-time distributed
coordination algorithm to solve the problem (2) is stated.
For i ∈ V, the ith agent is given by

ẋi=η(zi − xi),

żi=− η∇fi(xi)− ηκ
N∑
j=1

aij(zi−zj)− ηvi,

v̇i=ηκ

N∑
j=1

aij(zi − zj),

where xi(t), zi(t),vi ∈ Rd, κ ∈ R, and η > 0 is an arbitrary
positive constant. In network variables, x, z,v ∈ RdN , the
algorithm reads as

ẋ=η(z− x), (3a)

ż=− ηh− ηκ(L⊗ Id)z− ηv, (3b)

v̇=ηκ(L⊗ Id)z, (3c)

where h := ∇f(x) = [∇f>1 (x1), . . . ,∇f>N (xN )]>. Note
that the algorithm is distributed since each agent only
needs the local variables and the information of zj from its
neighbors. Furthermore, in contrast to the existing algo-
rithms, the gradient ∇f(x) is considered in the dynamics
of z instead of x.

4. MAIN RESULT

Here, we study the convergence of the distributed opti-
mization algorithm (3) over a connected and undirected
gradient topology. In the following, it is shown that the
equilibrium points are the optimal solution and consensus
between all agent are achieved.

Lemma 1. Suppose that
∑N
i=1 vi(0) = 0 and Assumption

1 hold true, then the equilibrium of (3) is an optimal
solution of the optimization problem (2).

Proof. The equilibrium point of (3), (x∗, z∗,v∗), satisfy
the following equalities

0=η(z∗ − x∗), (4a)

0=− η∇f(x∗)− ηκ(L⊗ Id)z
∗ − ηv∗, (4b)

0=ηκ(L⊗ Id)z
∗. (4c)

Since the graph is undirected and connected, we have
1>NL = 0. Thus, left multiplying (3c) by 1>N ⊗ Id results in∑N
i=1 v̇i = 0. With the assumption that

∑N
i=1 vi(0) = 0,∑N

i=1 vi(t) = 0 holds true. By using this and (4c), left

multiplying (4b) by 1>N ⊗ Id yields 0 =
∑N
i=1∇f i(xi). It

implies that the optimality condition is achieved. Further-
more, according to (4c), z∗ belongs to the null space of L.
For a connected graph, the null space of L is spanned by
1N . Thus, z∗ = 1N ⊗ θ where θ ∈ Rd. Given (4a), the
consensus on x∗ is also attained, i.e. x∗ = 1N ⊗ θ.

With this Lemma 1 in mind, the equilibrium point x∗

satisfies (L ⊗ Id)x
∗ = 0dN . The following result provides
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a condition on parameter κ to ensure the exponential
convergence of (3) to the optimal solution x∗ = 1N ⊗ θ.

Theorem 2. Under Assumption 1, let λ2 be the second
smallest eigenvalue of (L + L>)/2, µ := min{µ1, . . . , µN}
and M := max{M1, . . . ,MN}. Suppose that κ, φ > 0
satisfy φ > 2M and

ξ =: 4κφλ2 − 5φ2 + 4φ+ 4µφ− 8µM > 0, (5a)

γ =: 4κφλ2 − 7φ2 − 4φ− 9 > 0. (5b)

Then, for each i ∈ V, starting from xi(0), zi(0),vi(0) ∈ Rd

with
∑N
i=1 vi(0) = 0d, the trajectory of (3) exponentially

converges to x∗ with rate no less than

ηmin{ξ
4
,
γ

4
,

1

5
}/λB, (6)

where λB is the maximum eigenvalue of

B =


φ

2
+
φκ

2
(L⊗ Id)

ψ

2
INd 0Nd

ψ

2
INd

(φ+ 1)

2
INd

1

2
INd

0Nd
1

2
INd

1

2
INd

 .
Proof. Consider the following Lyapunov function

V = κ
φ

2
x>(L⊗ Id)x +

φ

2
‖x + z‖2︸ ︷︷ ︸

=:V1

+
1

2
‖v + z‖2︸ ︷︷ ︸
=:V2

with φ > 0 as in the statement. The Lie derivative of V1
along (3) can be written as V̇1 = ηẆ1 where

Ẇ1 =− κφx>(L⊗ Id)x + κφx>((L + L>)/2⊗ Id)z︸ ︷︷ ︸
=:r1

+ φx>(z− x)︸ ︷︷ ︸
=:r2

−φx>h−κφx>(L⊗ Id)z︸ ︷︷ ︸
=:r3

−φx>v︸ ︷︷ ︸
=:r4

+ φz>(z− x)︸ ︷︷ ︸
=:r5

−φz>h︸ ︷︷ ︸
=:r6

−κφz>(L⊗ Id)z−φz>v︸ ︷︷ ︸
=:r7

.

Note that r1 and r3 cancels each other due to the sym-
metry property of L. Furthermore, r2 + r5 = −φ‖x‖2 +

φ‖z‖2, r4 ≤ 5φ2

4 ‖x‖
2 + 1

5‖v‖
2, r6 ≤ φ2

2 ‖z‖
2 + 1

2‖h‖
2 and

r7 ≤ 5φ2

4 ‖z‖
2 + 1

5‖v‖
2 hold true. Substituting this to V̇1

yields

Ẇ1 ≤− κφx>(L⊗ Id)x−κφz>(L⊗ Id)z−φx>h +
1

2
‖h‖2

+
7φ2

4
‖z‖2 +

5φ2

4
‖x‖2 + φ‖z‖2 − φ‖x‖2 +

2

5
‖v‖2.

Furthermore, we have the Lie derivative of V̇2 = ηẆ2 as
follows

Ẇ2 =κv>(L⊗ Id)z︸ ︷︷ ︸
=:s1

−v>h︸ ︷︷ ︸
=:s2

−κv>(L⊗ Id)z︸ ︷︷ ︸
=:s3

−v>v

+ κz>(L⊗ Id)z︸ ︷︷ ︸
=:s4

−z>h︸ ︷︷ ︸
=:s5

−κz>(L⊗ Id)z︸ ︷︷ ︸
=:s6

−z>v︸ ︷︷ ︸
=:s7

.

Notice that s2 ≤ 1
5‖v‖

2 + 5
4‖h‖

2, s5 ≤ ‖z‖2 + 1
4‖h‖

2 and

s7 ≤ 9
4‖z‖

2 + 1
5‖v‖

2. By using this, and the fact that

s1, s3, s4, and s6 can be eliminated, Ẇ2 can be rewritten
as follows

Ẇ2 ≤−
3

5
v>v +

9

4
‖z‖2 +

6

4
‖h‖2.

Fig. 2. Trajectory of x converge to the optimal point.
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Fig. 3. The trajectory
∑N
i=1 |xi(2)− x∗(2)| tends to zero.

Faster convergence is obtained as η increases.

By using V̇1 and V̇2 above, we obtain V̇ = ηẆ1 + ηẆ2 =:
ηẆ , where Ẇ is given by

Ẇ =− κφx>(L⊗ Id)x−κφz>(L⊗ Id)z−φx>h−
1

5
‖v‖2

+

(
7φ2+4φ+9

4

)
‖z‖2+

(
5φ2−4φ

4

)
‖x‖2+2 ‖h‖2︸ ︷︷ ︸

≤Mx>h

≤−
(
4κφλ2 − 7φ2 − 4φ2 − 7

) ‖z‖2
4
− 1

5
‖v‖2

−
(
4κφλ2 − 5φ2 + 4φ

) ‖x‖2
4
−(φ−2M)x>h

Due to φ > 2M and x>h ≥ µ‖x‖2, it follows that

Ẇ ≤−
(
4κφλ2 − 7φ2 − 4φ− 9

)︸ ︷︷ ︸
=γ

‖z‖2

4
− 1

5
‖v‖2

−
(
4κφλ2 − 5φ2 + 4φ+ 4µφ− 8µM

)︸ ︷︷ ︸
=ξ

‖x‖2

4
.

Observe that ξ > 0 and γ > 0 in the statement ensure that
V (t) is bounded and V̇ < −ηmin{ ξ4 ,

γ
4 ,

1
5}‖y‖

2 < 0 where

y = (x>, z>,v>)>. Thus, x converges to x∗ exponentially
with rate no less than (6). The rate of convergence follows
Theorem 4.10 in Khalil (2002).

Remark 3. Note that there always exists κ satisfying
γ, ξ > 0. As a matter of fact, (5) can be ensured by
selecting a sufficiently large κ. Moreover, it is evident here
that faster convergence can be obtain by enlarging the
value of η.

In next section, numerical simulations are given to validate
the proposed algorithm.

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020



0 100 200 300 400 500 600 700 800 900 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

840 860 880 900 920 940 960 980 1000
0

1

2

10
-3

Fig. 4. The proposed method shows improved convergence
property than the existing algorithm.

5. SIMULATION

Consider a network of ten agents illustrated in Figure 1.
All fi(x), i = 1, . . . , 10, with x ∈ R2 in (1) are defined as
follows

f1 = 0.5e−0.5x(1) + 0.5e0.3x(2) + 0.4e5x(1),

f2 =(x(1)−4)2+(102x(2)−4)2, f3 = 0.5(1+x(2)2)+x(1)2,

f4 = x2(1) + e0.1x(2), f5 = e−0.1x(1) + 103e0.3x(2),

f6 = x4(1) + x2(2), f7 = 0.2e−0.2x(1) + 0.4e10
2x(2),

f8 = x4(1) + 2x2(2) + 2, f9 =e−0.2x(1)+5× 102x2(2),

f10 =e−0.2x(1)+(5× 102x(2)+2)2.

The proposed distributed algorithm is employed with η =
1. Figure 2 shows that equilibrium points of all agents
reach to the same equilibrium point. The equilibrium point
is the optimal solution as it is the same as the value
given by a centralized algorithm: x∗ = [0.2173;−0.0029].
Note that the convergence of x(2) is slower than x(1)
because the order of magnitude of x(2) in the global
objective function is smaller than that of x(1). Figure

3 implies that the trajectory of
∑N
i=1 |xi(2) − x∗(2)|,

i.e. error trajectory correspond to x(2), tends to zero
as t → ∞. Moreover, enhanced convergence property is
obtained by enlarging the value of η . As depicted in
Figure 4, the proposed method with η = 2 shows better
convergence property compared to the existing gradient-
based distributed algorithm Kia et al. (2015) .

6. CONCLUSION

A novel continuous-time coordination algorithm for an
undirected graph is proposed. The method yields exponen-
tial convergence, with the rate linearly dependent on the
value of parameter design η. The main advantage of the
method is that the convergence can be easily accelerated
to some point by choosing a larger η. The parallel result
for a directed and strongly connected graph will be pub-
lished separately. Furthermore, possible future research
includes an accelerated distributed algorithm that exactly
mimics the continuous-time Nesterov accelerated gradient
method, in which it is parametrized by increasing functions
instead of constant η.
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