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Abstract: The paper tackles trade-off between slow parameter adaptation and parameter
variance of recursive least square estimation (rLSE) after a system change. In this paper, the
cascade affine constant (CAC) estimation for linear systems is presented, which uses rLSE
parameters as an apriori knowledge for affine constant estimation, as it can be estimated faster
with lower variance as the result of its simple structure. In this configuration, rLSE uses a
slower forgetting rate for more accurate dynamics estimation, while affine constant is used to
react faster to changes in the system. The developed method is compared to recursive least
squares in predictive functional control, in which all metrics are better or at least equal.
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1. INTRODUCTION

The most widely used identification method for the time-
variant system is forgetting factor recursive least squares
estimation (rLSE) (see Plackett (1950)), which was suc-
cessfully deployed in many areas (see Ding et al. (2016)).
Even though many shortcomings of rLSE were already
solved, the paper is tackling the problem of the sudden
system parameter change: with high forgetting rate the
biased samples before the change are quickly forgotten, but
the variance of estimated parameters is increased, resulting
in unstable control. Vise-versa, with slower forgetting rate
the variance is lower, but it has a slower convergence rate
which could again lead to unstable control. Both outcomes
are greatly affected by the number of estimated parame-
ters - for models with 1 parameter forgetting rate can be
set much higher than for models with 6 parameters (3rd
order linear system with affine constant). But on the other
hand, using low-parameter models introduces enormous
structural bias.
This paper explores the idea of estimating affine constant
in cascade to normal rLSE algorithm - the goal is to
use stable dynamic parameters using the rLSE algorithm
with a slow forgetting rate as apriori knowledge for affine
constant estimation, which can have faster convergence
and therefore faster adaptation. The cascaded model is
thought to combine the structural complexity of the high-
parameter model estimated by rLSE with a fast adaptation
of affine constant estimation.
The main contributions of this paper are (1) the cas-
cade affine constant (CAC) estimation and (2) the novel
training set definition which detected and excludes biased
samples.
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Fig. 1. Block diagram of PFC control using CAC estima-
tion

2. METHODOLOGY

In this section, the methodology behind the methodology
of the cascade affine constant estimation is presented. In
subsection 2.1 the forgetting factor recursive least squared
is presented, after which the cascade affine constant es-
timation is explained in subsection 2.2. The section is
concluded with description of used predictive functional
control 2.3. The block diagram of the complete control
algorithm is shown in figure 1.

2.1 Recursive least squares estimation

Recursive least squares estimation is most used algorithm
for estimating linear model parameters. The output of the
linear model in this paper is defined with (1).

ŷ = ψTθL , (1)

where θL = [θL,1, . . . , θL,r]
T is the vector of linear model

parameters, ŷ represents the output of the linear model,
ψ = [ψ1, . . . , ψr−1, 1]

T represents the regression vector.
The parameters θL are estimated using (2). The symbol
P(k) stands for correlation matrix and θ̂L(k+1) presents
estimated parameters using rLSE in (k + 1) time-step.
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Correlation matrix P is updated every sample (3). The
λ stands for model forgetting factor (see Åström and
Wittenmark (1994)). In order to cope with steady-state
operation with low to zero excitement, the dead-band is
introduced: if the model have small error (4), the rLSE in
k-th time-step update is not executed. The constant kσ is
user-defined empirically.

θ̂L(k+1) = θ̂L(k) +P(k+1)ψ(k+1)

· (y(k+1)−ψ(k+1)θL(k)),
(2)

P(k+1) =
P(k)

λ

(
I − P(k)ψ(k+1)ψ(k+1)

T
P(k)

λ+ψ(k+1)
T
P(k)ψ(k+1)

)
, (3)

(y(k)− x(k)θ(k))2 < k2σ (4)

2.2 Cascade affine constant (CAC) estimation

When presented with only a limited number of unbiased
samples after the process change, less complicated models
are generally performing better. Even though the struc-
tural bias is increased, the model variance decreases more
significantly, which results in decreased overall expected
squared error (the statement is one of the bases for the
field of feature selection, see Peng et al. (2005)). At the
same time, using quality apriori knowledge (such as model
parameters before system change) can improve the ac-
curacy of parameters (for example, the knowledge that
most of the parameters can be set to 0, see Ledoit and
Wolf (2003)). Therefore, this paper proposes novel cascade
affine constant (CAC) estimation using rLSE estimated
model parameters as the apriori knowledge, for more ac-
curate model parameter estimation after system change
and faster control response.
The output equation of CAS model with cascade affine
constant is in the following form (5).

y(k) = x(k)θ̂L(k) + o(k) (5)

where o(k) presents cascade affine constant in k-th time
step. Affine constant o(k) is estimated by minimization of
squared error (7) between affine constant ô and the rLSE
model error êo (6) between measured output y(k) and
rLSE identified model output x(k)θL(k) on the training
set. The result (8) can be interpreted as mean of the error
of rLSE estimated model output on training dataset of last
Nt samples.

êo(k) = y(k)− x(k)θL(k) (6)

J =
1

Nt

Nt−1∑
j=0

(
êo(k − j)− o

)2 (7)

ô(k) =
1

Nt

Nt−1∑
j=0

êo(k − j) (8)

The number of training samples Nt can greatly influence
the behavior of the model-based control identically as
the forgetting rate influence rLSE parameters: the more
samples are taken for the identification, a variance is
decreased but bias can be introduced if the system changed
(and vise-versa if a small number of samples is used). In
section (2.2.1) the method for optimal merging of multiple
estimator, which is later used in the algorithm for choosing
optimal Nt, presented in section 2.2.2.

Optimal estimator merge (OEM) In this section the
algorithm for estimating optimal merge between multiple
estimators into one with lowest expected value of squared
error is presented. Given three estimators and their vari-
ances, currently best estimator named apriori estimator ôa
(which holds already known information), estimator which
holds additional information for improving apriori estima-
tor is named potential estimator ôp and unbiased estimator
with larger variance ôb (which is used to estimate biases
of apriori and potential estimators), the optimal estima-
tor merge searches such variable a to minimize expected
value of squared error of combined estimator, defined as
combination of apriori and potential estimator (9).

ô = (1− a)ôa + aôp (9)

The objective function is defined as expected value of
squared difference between estimator ôp and real value of
affine constant o (10).

J(a) = E
[
(ô− o)2

]
=

= E
[
((1−a)(o+∆ôa,+bôa)+a(o+∆ôp+bôp)− o)2

] (10)

E
[
(ôp − o)2

]
= (1− a)2E

[
(∆ôa,+bôa)

2
]
+ 2(1− a)·

· aE
[
(∆ôa,+bôa)(∆ôp + bôp)

]
+ a2E

[
(∆ôp + bôp)

2
] (11)

where ∆ôa/∆ôp presents noise, bôa/bôp presents bias of the
estimator ôa/ôp. Because the true values of biases bôa and
bôp are not known, they must be estimated using (12). The
bias estimators have also additional Gaussian noise (13-
14), which also need to be taken into the account when
estimating expressions in (11). For the purpose of this
section, the noise variances of estimators σ̂2

ôa
, σ̂2

ôb
, σ̂2

ôp
are

known. Cross correlations between any noises in this paper
are neglected. Each expected value expression is computed
in (15 - 17), and after the expressions are inserted into (11),
the final objective function is obtained (18).
E
[
bôp

]
= b̂ôp = ôp − ôb, E

[
bôa

]
= b̂ôa = ôa − ôb (12)

bôa = b̂ôa + ∆bôa , bôp = b̂ôp + ∆bôp (13)
∆bôa ∼ N (0, σ̂2

ôa + σ̂2
ôb
), ∆bôp ∼ N (0, σ̂2

ôp + σ̂2
ôb
) (14)

E
[
(∆ôa + bôa)(∆ôp + bôp)

]
= b̂ôa b̂ôp (15)

E
[
(∆ôa + bôa)

2
]
= σ̂2

ôa + b̂2ôa + σ̂2
ôa + σ̂2

ôb
(16)

E
[
(∆ôp + bôp)

2
]
= σ̂2

ôp + b̂2ôp + σ̂2
ôp + σ̂2

ôb
(17)

E
[
(ô− o)2

]
= (1− a)2(2σ̂2

ôa + b̂2ôa + σ̂2
ôb
)+

+ 2(1− a)a(b̂ôa b̂ôp) + a2(b̂2ôp + 2σ̂2
ôp + σ̂2

ôb
)

(18)

In respect to weight a, the objective function represents
second order polynomial, consequentially the minimum
can be analytically solved by equaling derivative of J in
respect to a to 0 (19).

∂

∂a
E
[
(ô− o)2

]
= −2(1− a)(2σ̂2

ôa + b̂2ôa + σ̂2
ôb
)+

+ 2(1− 2a)(b̂ôa b̂ôp) + 2a(b̂2ôp + 2σ̂2
ôp + σ̂2

ôb
) = 0

(19)

The final equation for weight a is (20). The second deriva-
tive of objective function is always positive, therefore the
a always represents the minimum point.

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020



a =
2σ̂2

ôa
+ σ̂2

ôb
+ b̂2ôa − b̂ôa b̂ôp

2σ̂2
ôa

+ 2σ̂2
ôb

+ 2σ̂2
ôp

+ b̂2ôa + b̂2ôa − 2b̂ôa b̂ôp
(20)

Defining training set In this section, the incremental
algorithm for defining the training set for CAC estimation
is presented. The goal of the algorithm is to define optimal
training samples size Nt with regard to the minimal
expected squared error of the estimator (minimal sum of
variance and bias).
In i-th iteration, the algorithm checks if the samples used
for potential estimator ôp,i can improve the squared error
of the best estimator in previous iteration ôi−1(k) using
OEM. In this paper the potential estimator (22) and its
variance (23) is defined as a weighted average of samples
preceding k − i, where weights are set linearly using (21).

wp,i,j(k) =
Ns−(k−i−j)∑
(Ns−(k−i−j))

=
2(Ns−(k−i−j))

Ns(Ns+1)
,
k−i≥j>
>k−i−Ns

0, otherwise
(21)

ôp,i(k) =

i+Ns∑
j=1

wp,i,jeo(j) (22)

Var[ôp,i(k)] = σ̂2
ôp,i(k) =

Ns∑
j=1

w2
p,i,j (23)

The weights of j-th sample in i-th iteration w̃i,j is intro-
duced. The weights in i-th iteration are derived directly
from estimators definitions (24). The result is straightfor-
ward (25).

ôi,j = (1− ai)ôa,i−1 + aiôp,i =

∞∑
j=0

w̃i,jeo(j) (24)

w̃i,j = (1− ai)w̃i−1,j + aiwp,i,j (25)

In order to use OEM algorithm, the unbiased estimator
ôb needs to be defined. Because every available estimator
have some disadvantage (large variance or possible bias),
the paper proposes that the OEM is computed with all
past estimators ôb,i ∈ ôa,j ,∀j and take lowest coerced
weight a∗ij ,∀j. Replacing ôa, ôb, ôp with iterative estima-
tors ôa,i, ôa,j , ôp,i in (12)(20) results in (26)(27). The a∗ij
can be less than 0 and higher than w̃i,j , which contradicts
the definition of weights (aij ∈ [0, 1]) and assumption that
the eo(k) is unbiased. Therefore, the coercion of aij is
introduced (28).

b̂ôp,ij = ôp,i − ôa,j , b̂ôa,ij
= ôa,i − ôa,j (26)

a∗ij =
2σ̂2

ôa,i
+ σ̂2

ôa,j
+ b̂2ôa,ij

− b̂ôa,ij
b̂ôp,ij

2σ̂2
ôa,i

+ 2σ̂2
ôa,j

+ 2σ̂2
ôp,i

+ b̂2ôa,ij
+b̂2ôa,ij

−2b̂ôa,ij b̂ôp,ij
(27)

aij =


0, a∗ij < 0

a∗ij , 0 ≤ a∗ij ≤
w̃i−1,1(k)(1− a∗ij)

Wi
w̃i−1,1(k)(1− a∗ij)

Wi
,

w̃i−1,1(k)(1− a∗ij)

Wi
< a∗ij

(28)

ai = min{ai1, . . . aii} (29)

The algorithm is initialized by setting weights following
(30). The initialization ensures that while using (25), the
weight of any sample is equal or lower than the weight of
the most recent sample w̃i,k. The estimated affine constant
is initialized using weights (31), the initial sample variance
σ̂2
ôa,i

(k) is set to sample variance in previous time step (31)
and the estimator variance is computed following (32).

wk−j =


(Ns − j)(Ns − j + 1)

Ns(Ns + 1)
, 0 ≤ j < Ns

0, otherwise
(30)

ôa,1(k) = eo(k), σ̂2
y,1(k) = σ̂2

y(k−1) (31)

Var[ôi(k)] = σ̂2
ôa,i

(k) =

∑Ns+i
j=1 w2

k−j

(
∑Ns+i

j=1 wk−j)2
σ̂2
y,i(k) (32)

The algorithm is stopped when two consecutive samples
have weight relative to the w̃k smaller than the user-
defined threshold te (33), which means that the bias has
been detected (with only one, the noise could bring false
positive detection). At that point, the Nt(k) is set to
iteration number i.

max [w̃k−i, w̃k−i+1]

w̃k
< te → Nt(k) = i (33)

Last thing to estimate recursively is sample variance σ̂2
y,i,

which is time-variant because after the system change, es-
timated rLSE parameters θ̂L are introduced with bias, and
this bias contributes to increased sample variance. In every
step there are 2 σ̂2

y,i estimators: one from previous iteration
σ̂2
y,i−1 and measured variance σ̂2

m,i (34). Best estimator
is the combination of the two (35), where aσ̂,i is found
by minimizing expected squared error of the combined
estimator (36). Using approximation of Var[σ̂m,i] (37), the
aσ̂,i is computed using (38).

σ̂2
m,i =

1

Nt,i − 1

Nt,i∑
j=1

(eo(k − j)− ôi(k))
2 (34)

σ̂2
y,i = aσ̂,iσ̂

2
m,i + (1− aσ̂,i)σ̂

2
y,i−1 (35)

J = E
[
σ2
y,i − σ̂2

y,i

]
(36)

Var[σ̂m,i] ≈
1

Nt,i

(
1

2
+

1

8Nt,i
+

21

64N2
t,i

)
σ̂2
y,i−1 (37)

aσ̂,i =
bσ̂2

y,i−1

bσ̂2
y,i−1

+Var[σ̂m,i]
, bσ̂2

y,i−1
= σ̂2

m,i − σ̂2
y,i−1 (38)

2.3 State estimation and control

In this paper the control bases on predictive functional
control (PFC) described in Karer et al. (2008), to which
affine constant was added to the linear model. The result-
ing control law is (39)(40)

η = C(AH − I)−1(A− I)B (39)

u =η−1

(
(1− aHr )(r(k)− yp(k)) + ym(k)−

−C
(
AHxm + (AH − I)(A− I)−1

)
O

) (40)
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where A,B,C,O presents matrices of state space model
with affine constant (41), H presents coincidence horizon,
x presents estimated states, ym model output, yp presents
measured output and r presents reference.

x(k+1) = A(k)x(k) +B(k)u(k) +O(k)

y(k) = C(k)x(k)
(41)

In this paper, the state space is defined in observable
canonical form, therefore the states can be estimated as
the delayed output y (42), where p presents model order.

x(k) = [y(k), . . . , y(k − p− 1)]T (42)

Algorithm 1 Cascade affine constant estimation with
rLSE

1: Initialize θL(0),P(0)
2: At every timestep k

3: Update rLSE parameters θ̂L(k) (2)
4: CAC
5: Initialize variables (21 - 32), i = 1
6: Until criteria (33) , i = i + 1
7: For each 0 ≤ j ≤ i
8: Compute aij (27 - 28)
9: Update wj (25)(29), ôi (8), σ̂2

y,i (35)(38)
10: Estimate final ô(k) (8) using Nt(k) (33)
11: Compute u using PFC, section 2.3 using θA (5)

3. RESULTS

The developed algorithm was compared to rLSE with
different parameters (λ, te). Process on which comparison
was done was synthetic linear 3rd order system with initial
discrete poles at p1 = p2 = 0.9, p3 = 0.5, affine constant
o = 0, and gain K = 0.15 with output Gaussian noise
σ2 = 0.05 and quantization with discrete step of ∆ = 0.1
and sampled with Ts = 0.01s. The system was changed
at time t1 = 6s, where pole is changed p∗1 = 1.08. The
reference was changing at the interval of 4s between 20
and 40. The parameters of PFC are H = 6, ar = 0.8.

Fig. 2. Response using different identification methods

The area of interest is response just after the system
change and the next reference step where the new system
information is used (example in figure 2). Models were
compared on the sum of squared error, percentage of
overshoot (OS), and settling time ts (when the process gets
within 2 of reference). Results after the system change and
after first reference change are shown in Table 1.
The developed algorithm matches the performance of
fast adaptive models in settling time, and at the same

time, it matches squared error and overshoot metric of
the slower models. One of the drawbacks of the method
is computational complexity because in each time step
O(N2

t ) iterations are computed.
Table 1. Response analysis

CAC
kσ = 0

λ = 0.99

kσ = 0.5

λ = 0.99

kσ = 1

λ = 0.99

kσ = 0.5

λ = 0.995

After the pole change
e2 5.68 9.32 9.96 6.60 12.44

OS[%] 11.33 15.52 13.38 11.94 12.59
Ts 0.39 0.31 1.23 1.92 1.39

First reference step after system change
e2 6.40 71.18 6.86 9.23 8.52

OS[%] 0.87 1.88 0.86 0.62 0.65
Ts 0.43 0.44 0.82 1.91 1.21

4. CONCLUSION

In the paper, the novel CAC estimation was presented,
which uses stable rLSE with a slow forgetting rate as
the apriori knowledge for fast and stable affine constant
estimation, which combines parameter stability of rLSE
with a fast adaptation of affine constant. The algorithm
was compared to rLSE with different forgetting rates in the
model predictive control experiment, where the developed
algorithm expressed a fast convergence rate in combi-
nation with a lower overshoot at step reference change.
Future work will focus on computational improvement and
possible implementation of other classes of models used in
model predictive control.
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