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Abstract: We present in this brief note a nonlinear model of a cluster of district heating
subsystems, each of which is conformed by a local producer, a storage tank, and a local consumer.
We explicitly provide storage functions and adequately chosen outputs from which we establish,
under certain assumptions, that such a system is shifted passive, opening the possibility for
decentralized and distributed passivity-based control design.
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1. INTRODUCTION

1.1 Motivation

Heat represents an important proportion of the total en-
ergy demand in urbanized areas. Such heat demand is sup-
plied through Heat Exchanger Networks (HENs), for the
case of industrial facilities, and District Heating Systems
(DHSs), for residential buildings. In both settings, the
primary resources for heat production are usually fossil fu-
els, notably, natural gas. However, environmental concerns
are pushing—as for electrical power systems—the gradual
introduction of Renewable Energy Sources (RESs), e.g.,
geothermal and solar thermal, for heat production. 1

The use of RESs as primary resources for heat production
introduce challenging constraints in the operation and
control of DHSs. In this setting, the control system in
charge of the balance between production and demand
has to deal with the uncertainties associated to both the
RESs and the heat demand profile: a heat production-
demand imbalance may give rise to energetic inefficiency
in the heat distribution network and poor quality of
service to end-users. The introduction of (thermal) storage
devices in heating networks has been shown to be an
effective asset for a correct production-demand balance by
allowing any excess of heat to be stored for later use, e.g.,
during the peak of demand; nonetheless, a key feature of
heating networks, particularly of DHSs, is that they can
extend through large geographical areas, imposing severe
constraints for the correct implementation of centralized
controller architectures, which motivates the exploration
of both decentralized and distributed control approaches.
? This work was funded by Innovation Fund Denmark (IFD) and the
Dutch Organization for Scientific Research (NWO) through TOP-
UP, project number 91176.
1 Other alternative primary resources are: residual heat from in-
dustries or data centers and, prominently, from electrical power
production, in what is known as a Combined Heat and Power (CHP)
scheme.

A promising perspective to simultaneously augment en-
ergy efficiency levels and increase operational flexibility is
the interconnection between initially isolated DH subsys-
tems, to form, through a network of distribution pipes, a
cluster of DHSs, in a clear analogy with interconnected
distributed power systems, e.g., microgrids. In the present
text we focus particularly on modeling and establishing
passivity properties for such clustered DHSs.

1.2 Literature overview

In De Persis and Kallesoe (2011) is presented, along with a
detailed modeling of the underlying hydraulic network of a
DHS, a solution to the problem of practical end-user pres-
sure regulation; these results were extended in De Persis
et al. (2014) to achieve exact pressure regulation via decen-
tralized PI controllers, and more recently in Scholten et al.
(2017) to consider the case of constrained input variables.
On the other hand, simultaneous temperature and storage
tank volume regulation has been addressed in Scholten
et al. (2015) for a DHS comprising a single producer,
single storage tank, and many consumers. In Trip et al.
(2019)—now for a cluster of DH subsystems—the problem
of storage tank water volume regulation is addressed via
distributed controllers, guaranteeing the minimization of a
suitable cost function and simultaneously satisfying both
input and flow transient constraints.

1.3 Contributions

As an extension, if modest, to the above described volume
of research, we propose in this brief manuscript a nonlinear
model of a cluster of district heating subsystems in which
temperature and storage tank volume dynamics are simul-
taneously considered. Furthermore, we provide conditions
to ensure shifted passivity with respect to explicitly iden-
tified storage function and passive output, which given the
nonlinear nature of the model, proves to be a non trivial
task.
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Passivity concepts have shown to be instrumental for the
distributed control of electrical DC microgrids, where fea-
tures such as fair load sharing—which basically prevents
the over-stressing of distributed generation units De Persis
et al. (2018)—can be achieved whilst preserving system
stability Cucuzzella et al. (2019). For, we believe that
our contribution is particularly relevant to attain similar
features in the operation of clustered district heating net-
works.

1.4 Organization of the manuscript

The organization of the document is as follows. In Section
2 we present, after reviewing its main components, a
nonlinear model of a cluster of DH subsystems. Our main
result, which provides conditions for shifted passivity of
the system model, appears in Section 3. The manuscript is
concluded with Section 4 where a number of final remarks
and future perspectives are given.

1.5 Notation

R denotes the set of real numbers. For a vector x ∈ Rn,
xi denotes its i-th component. We also write vectors as

col(xi)
n
i = [x1 x2 · · · xn]

>
. An m×n matrix with all-zero

entries is written as 0m×n. An n-vector of ones is written
as 1n, whereas the identity matrix of size n is represented
by In. Λ(xi)

n
i=1 is a diagonal matrix with elements xi in its

main diagonal and block.diag(Ai)
n
i=1 as a block-diagonal

matrix for which the block-diagonal submatrices are Ai.

2. SYSTEM MODEL

We consider a cluster of n district heating subsystems that
are interconnected by a distribution piping network. Each
node of the cluster represents a district heating subsystem
itself, which comprises a local producer, a consumer and
a stratified storage tank. The topology of each node is
depicted in Fig. 1, where we have highlighted with colors
and arrows the temperatures and directions of the water
flow; in the same figure we show the variables associated
with the thermal layer of the system, the physical meaning
of which are explained in Table 1. 2 On the other hand, the
hydraulic layer of the nodes and the distribution piping
network is illustrated, for a two node district heating
system, in Fig. 2; the meaning of the hydraulic layer’s
variables is presented in Table 2.

2.1 Conforming elements

We describe in detail the basic elements conforming each
district heating subsystem. The thermal layer is modeled
after Scholten et al. (2015) (see also Scholten (2017)),
whereas the hydraulic layer is partially modeled after De
Persis and Kallesoe (2011) (see also De Persis et al. (2014),
Scholten et al. (2017)).

Producer: The producer can directly deliver a thermal
power injection P pi into the network through a heat
exchanger. The heat exchanger is assumed to maintain a
constant volume of water V pi in its interior, moreover, the

2 Please see Remark 2 for an explanation about the units of the
power injection/extraction.

Fig. 1. Topology of a node in the district heating cluster; cf.

(Scholten et al., 2015, Fig. 1), (Trip et al., 2019, Fig. 3b).

water flow through it is denoted by qpi , with an inflow and

outflow temperature of TSc
i and T pi , respectively.

Storage Tank: The tank stores a mixture of hot and cold
water. The device has four valves, two at the top and two
at the bottom, which are used as inlets or outlets of hot
or cold water.

Assumption 1. The volumes of hot and cold water in the
storage tank are separated via a thermocline, with the
hot water on top and the cold water at the bottom,
and without heat exchange between them. Moreover, the
storage tank is perfectly isolated and consequently does
not have thermal losses through its walls. In addition, the
capacity of the storage tank is denoted by V max

i and is
assumed to be always completely filled with water, i.e.,
the following holds.

V Sh
i + V Sc

i = V max
i for all t ≥ 0 (1a)

V Sh
i (0), V Sc

i (0) ∈ [V min
i , V max

i − V min
i ] =: Ii, (1b)

where 0 < 2V min
i ≤ V max

i <∞.

The volumes, temperatures of the hot and cold layers of
the storage tank are denoted by V Sh

i , TSh and V Sc
i , TSc ,

respectively.

Consumer: Analogously to a producer, a consumer can
directly extract thermal energy from the system at rate

Table 1. Symbols used in the thermal layer of the

system.

Symbol Description Unit

T pi Temperature of the producer ◦C

P pi Power injection of the producer m3◦C
s

T
Sh
i Temperature of the hot layer of the storage tank ◦C

TSc
i Temperature of the cold layer of the storage tank ◦C
T ci Temperature of the consumer ◦C

P ci Power demand of the consumer m3◦C
s

Table 2. Symbols used in the hydraulic layer of the

system.

Symbol Description Unit

qpi Flow of the producer m3/s

V
Sh
i Volume of the hot layer of the storage tank m3

V Sc
i Volume of the cold layer of the storage tank m3

qci Flow of the consumer m3/s

qτ,h
k

Flow of hot water through the k-th distribution pipe m3/s
qτ,c
k

Flow of cold water through the k-th distribution pipe m3/s
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Fig. 2. Hydraulic layer of a two node district heating system.

Although valves and pumps are included in this diagram, their

effect is not considered our model.

P ci via a heat exchanger. The flow through the exchanger
is denoted by qci and has an outflow temperature of T ci ; the
exchanger is also assumed to maintain a constant volume
of water V ci in its interior.

Remark 1. The power demand P ci of the consumer is
regarded in our manuscript as a constant disturbance. This
contrasts with the more complex model taken in Scholten
et al. (2015), where P ci as a linear combination of constant
and sinusoidal signals.

2.2 Aggregated Model

The topology of the network is described by a connected,
directed graph G = (V, E), where V = {1, 2, ..., n} is the
set of nodes of the cluster and E = {1, 2, ...,m} is the set
of edges connecting the nodes, which physically represent
hydraulic pipelines. The topology is codified through its
corresponding node-to-edge incidende matrix B ∈ Rn×m,
defined by

Bik =

{
+1 if the edge k targets node i,
-1 if the edge k originates in node i,
0 otherwise.

The interconnection between the nodes of the cluster is
established through a piping network as we depict in Fig. 2
for a two-node district heating system: each link consists
of two independent pipes for hot and cold water flow,
respectively; water flow through the pipes is denoted by

qτ,hk and qτ,ck , k ∈ E .

Assumption 2. Every flow qτ,hk and qτ,ck , k ∈ E , is an
independent control input. However, we consider that if

qτ,hk is the hot water flow from i to j, then qτ,ck ≡ qτ,hk
would be the cold water flow from j to i. In addition, the
flow directions are taken according to edges’ directions,
which are codified by the incidence matrix.

Then we can formulate, on the one hand, the energy
balance equations for the producer, storage tank, and
consumer, for each i ∈ V, which respectively read as

V pi Ṫ
p
i = qpi

(
TSc
i − T

p
i

)
+ P pi , (2a)

V Sh
i ṪSh

i = qpi

(
T pi − T

Sh
i

)
+
∑
k∈Nh

i

qτ,hk (TSh
j − T

Sh
i ), (2b)

V Sc
i ṪSc

i = qci

(
T ci − T

Sc
i

)
+
∑
k∈N c

i

qτ,ck (TSc
j − T

Sc
i ), (2c)

V ci Ṫ
c
i = qci

(
TSh
i − T

c
i

)
− P ci , (2d)

where N h
i , N c

i is the set of hot, cold water distribution
pipes targeting node i ∈ V, respectively.

On the other hand, the volume (mass) balance at the hot
and cold layer of the i-th storage tank read, respectively
as

V̇ Sh
i = qpi − q

c
i +

∑
k∈Ni

qτ,hk , (3a)

V̇ Sc
i = qci − q

p
i −

∑
k∈Ni

qτ,ck , (3b)

where Ni is the set of edges incident to node i. 3

Remark 2. In a clear abuse of notation, we refer to the
quantities P pi and P ci as (thermal) powers, however, both
quantities should appear with the coefficient 1

Cpρ
, where

Cp and ρ are the water’s specific heat and density, re-
spectively. Nonetheless, such omission does not affect our
results.

Remark 3. In virtue of Assumption 2, from (3) we get that

V̇ Sh
i + V̇ Sc

i = 0 ⇒ V Sh
i (t) + V Sc

i (t) = V max
i , ∀t ≥ 0

for all i ∈ V, provided V Sh
i (0) + V Sc

i (0) = V max
i , which

holds by Assumption 1. Since V Sc becomes a variable
dependent on V Sh , in the sequel we discard the second
equation in (3). In addition, the variable V Sc

i appearing in
(2) is substituted by

V Sc
i = V max

i − V Sh
i , ∀i ∈ V.

2.3 System Model in Matrix Form

Let T p = col(T pi ), TSh = col(TSh
i ), TSc = col(TSc

i ) and

T c = col(T ci ). In addition, let V Sh = col
(
V Sh
i

)
and V Sc =

col
(
V Sc
i

)
. We define the state vector as X = col(x, z),

where

x =


T p

TSh

TSc

T c

 ∈ R4n, z = col
(
V Sh
i

)
∈ Rn. (4)

On the other hand, the vector of control inputs is written
as U = col(u, vp, vc, w), where

u = col(P pi ) ∈ Rn, vp = col (qpi ) ∈ Rn, (5)

vc = col (qci ) ∈ Rn, w = col (qτk) ∈ Rm, (6)

Furthermore, the effect of the consumers’ power demand
is codified by the constant vector

d =
[
0>n 0>n 0>n −col (P ci )

>]> ∈ R4n. (7)

Using the above definitions, the systems (2) and (3) can
be compactly represented as follows.

M(z)ẋ = −A(vp, vc, w)x+Bu+ d, (8a)

ż = vp − vc + Bw, (8b)

with matrices

M(z) = block.diag (Λ(V p), Λ(z), Λ(V max − z), Λ(V c)) ,
(9)

where V max = col (V max
i ). Also,

A =


Λ(vp) 0n×n −Λ(vp) 0n×n
−Λ(vp) Λ(vp) + B+Λ(w)B> 0n×n 0n×n
0n×n 0n×n Λ(vc) + B−Λ(w)B> −Λ(vc)
0n×n −Λ(vc) 0n×n Λ(vc)


(10)

3 In the sequel we simply write qτk := qτ,h
k

= qτ,c
k

(see Assumption 2).
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where B+ and B− are matrices with the positive and
negative entries of B, respectively. In addition,

B =

[
In

03n×n

]
(11)

The state and input spaces of system (8) are taken,
respectively, as

X = {(x, z) ∈ R5n
>0} (12)

and
U = {(u, vp, vc, w) ∈ R3n+m

>0 }. (13)

Remark 4. The matrix A(vp, vc, w) is linear with respect
to its arguments. Then, there exist matrices Ap,i, Ac,i and
Aτ,i such that

A(v, w) =

n∑
i=1

vpiAp,i +

n∑
i=1

vciAc,i +

m∑
i=1

wiAτ,i,

which, due to space constraints, are not shown here.

3. PASSIVITY PROPERTIES

We present in this section our main result, which estab-
lishes conditions for the shifted passivity of the model (8).
Consider first the following standing assumption.

Assumption 3. There exists an equilibrium tuple

(X̄, Ū) ∈ X × U
for the system (8).

We are in position now to present our main result.

Proposition 1. Consider the system (8) and let (X̄, Ū)
denote an equilibrium tuple. Define

S(x, z) =
1

2
(x− x̄)>M(z)(x− x̄) +

1

2
(z − z̄)>(z − z̄)

and the mappings

Fz(x, x̄) = 1
2

[
(x− x̄)>D1(x− x̄) · · · (x− x̄)>Dn(x− x̄)

]>
,

Fp(x, x̄) =
[
(x− x̄)>Ap,1x · · · (x− x̄)>Ap,nx

]>
,

Fc(x, x̄) =
[
(x− x̄)>Ac,1x · · · (x− x̄)>Ac,nx

]>
,

Fτ (x, x̄) =
[
(x− x̄)>Aτ,1x · · · (x− x̄)>Aτ,mx

]>
,

where

Di = block.diag
(
0n×n, eie

>
i ,−eie>i , 0n×n

)
.

Assume that (v̄p, v̄c, w̄) is such that

symm{A(v̄p, v̄c, w̄)} ≥ 0.

Then, along trajectories of (8), the following holds.

Ṡ ≤

 u− ū
vp − v̄p
vc − v̄c
w − w̄


>  B>(x− x̄)

Fz(x, x̄) + (z − z̄)−Fp(x, x̄)
−Fz(x, x̄)− (z − z̄)−Fc(x, x̄)
B> (Fz(x, x̄) + (z − z̄))−Fτ (x, x̄)

 .
Consequently, the system is shifted passive with storage
function S.

In the following corollary, which follows directly from
Proposition 1, we consider the case in which the flows in
the piping system and the volumes in both layers of every
storage tank are fixed at their respective stationary states,
i.e., the system (8b) is not taken into account. 4

4 This setting is meaningful when there is a distinct time scale
separation between the dynamics of the hydraulic (fast) and thermal
(slow) parts of the system.

Corollary 1. Consider that V Sh , V Sc are constant and in
satisfaction of Assumption 1. Moreover, assume the tuple
(v̄p, v̄c, w̄) is such that symm{A(v̄p, v̄p, w̄)} ≥ 0. Then, the
system (8a) is shifted passive with storage function

x 7→ 1

2
(x− x̄)>M(z)(x− x̄)

and shifted output

y1 − ȳ1 = B>(x− x̄).

4. DISCUSSION

We have shown in this brief manuscript that a cluster of in-
terconnected district heating subsystems is shifted passive
under certain conditions. The analysis has been carried out
for a nonlinear model of the system, which simultaneously
treats both temperature and volume dynamics of each
storage tank. Our current research is focused on finding
distributed conditions to verify symm(A(vp, vc, w)) ≥ 0,
which has been instrumental to establish our main results;
moreover, we are exploring the design of decentralized and
distributed passivity-based controllers aimed at achieving
simultaneous temperature and volume regulation in the
system.
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