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1. INTRODUCTION

With the ever-increasing availability of measured data
in many engineering fields, the need for incorporating
measurements in the modeling process has steadily grown
over the last decades. The main challenge is how to
use the available data effectively in order to construct
models that can accurately represent the dynamics of
the underlying dynamical process. Sometimes, in order
to satisfy accuracy requirements, the fitted models might
have large dimension and hence are not suitable for fast
numerical simulation. That is why it is of great interest
to come up with reliable reduced-order surrogate models
instead.

Model reduction is commonly viewed as a methodology
used for reducing the computational complexity of large
scale complex models in numerical simulations. The goal
is to construct a smaller system with the same structure
and similar response characteristics as the original. For
an overview of model reduction methods, we refer the
reader to the books Antoulas [2005], Benner et al. [2017],
Antoulas et al. [2020].

In this work, we assume that the nonlinear systems to
be modeled contains quadratic nonlinearities. This class
of systems is of interest since most smooth nonlinear
systems can be reformulated, without any approximation,
as quadratic or quadratic-bilinear (QB) systems (provided
that the nonlinearities are analytical). Model order reduc-
tion (MOR) methods specifically tailored for reducing QB
systems have been already proposed in Benner and Breiten
[2015], Benner and Goyal [2017], Benner et al. [2018]. For
a general overview on system theoretical nonlinear MOR
approaches, see Baur et al. [2014].

The MOR method that is in the center of the current
study is the Loewner Framework (LF). It is a data-
driven model identification and reduction technique that
was originally introduced in Mayo and Antoulas [2007].

Using only measured data, it constructs surrogate models
directly, and with basically no computational effort. For a
tutorial paper on LF for linear systems, we refer the reader
to Antoulas et al. [2017]. For an extension that uses time-
domain data, see Peherstorfer et al. [2017]. The Loewner
framework has been recently extended to certain classes
of nonlinear systems, such as bilinear systems in Antoulas
et al. [2016], and quadratic-bilinear (QB) systems in Gosea
and Antoulas [2018].

In this study, we will analyze the later extension. By
means of using time-domain data (output trajectories
when the input is an oscillating signal, i.e. a sine/cosine),
we compute transfer function values of the quadratic
system. We apply this procedure to nonlinear examples
such as the Lorenz system and the van der Pol oscillator.

2. QUADRATIC SYSTEMS

Consider quadratic systems that are characterized by the
following equations

Eẋ(t) = Ax(t) + Q (x(t)⊗ x(t)) + Bu(t),

y(t) = Cx(t).
(1)

where E,A ∈ Rn×n,B,CT ∈ Rn and Q ∈ Rn×n2

. The
Kronecker product is used, i.e.

x⊗ x = [x21 x1x2 . . . x1xn . . . x2n]T ∈ Rn2

.

For such class of systems, one can explicitly compute gen-
eralized transfer functions in the frequency domain. This
will be done through Volterra series theory. In general, the
Volterra series describes the relationship between the con-
trol input and the observed output of a dynamical system
whose dynamics is characterized by nonlinear behavior.
For more details, see Rugh [1981].

An explicit formulation of input-output mappings in the
time domain is provided by means of the Volterra kernels.
The frequency domain equivalent of these kernels is rep-
resented by the generalized transfer functions (which are
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multi-variate rational functions). Such functions can be
derived from time-domain data by applying generalized
Fourier or Laplace transformations.

A method for deriving analytical expressions of generalized
transfer functions is the harmonic input probing method
in Bedrosian and Rice [1971]. It is based on the fact that
a harmonic input must result in a harmonic output. For
simplicity, we use a single harmonic function to identify
explicit formulas for the generalized transfer functions in
the case of quadratic systems.

Consider the input signal to be purely oscillatory, i.e.
u(t) = αejωt, where j =

√
−1 and ω, α > 0. Begin by

making the following assumption for the solution of (1)

x(t) =

∞∑
`=1

G`(jω)α`e`jωt, (2)

where G` : C → Cn. Substitute the formulation of x(t)
from (2) into the original differential equation in (1), and
equate the coefficient of the term e`jωt, ∀` > 1 from both
left and right sides of the equation. In this way, one can
find explicit formulas for functions G` in (2). Then, the
transfer functions H` : C → C are written as follows
H`(jω) = CG`(jω), ∀` ≥ 1.

The first transfer function is H1(jω) = CG1(jω) and can
be written in terms of the system’s matrices as

H1(jω) = C(jωE−A)−1B = CΦ(jω)B, (3)

where Φ(s) := (sE−A)−1, ∀s ∈ C. Furthermore, one can
write the second transfer function as

H2(jω) = CΦ(2jω)Q
[
Φ(jω)B⊗Φ(jω)B

]
. (4)

In general, the nth transfer function can be recursively
written in terms of the first n− 1 functions G` as

Hn(jω) = CΦ(njω)Q
[ n−1∑

`=1

G`(jω)⊗Gn−`(jω)
]
, ∀n > 1.

3. THE LOEWNER FRAMEWORK

Given the following scalar data partitioned into

right data : (λi; wi), i = 1, · · · , k, and,

left data : (µh; vh), h = 1, · · · , k, (5)

find the function H(s), such that the following interpola-
tion conditions are (approximately) fulfilled:

H(λi) = wi, H(µh) = vh. (6)

The Loewner matrix L ∈ Ck×k and the shifted Loewner
matrix Ls ∈ Ck×k are defined as follows

L(i,h) =
vi −wh

µi − λh
, Ls(i,h) =

µivi − λhwh

µi − λh
(7)

while the data vectors V,WT ∈ Rk are introduced as

V(i) = vi, W(h) = wh. (8)

The Loewner model is composed of

E = −L, A = −Ls, B = V, C = W.

In practical applications, the pencil (Ls, L) is often singu-
lar. In these cases, perform a rank revealing singular value
decomposition (SVD) of the Loewner matrix L
L = XSY∗ ≈ XrSrY

∗
r , with Xr,Yr ∈ Ck×r, Sr ∈ Cr×r.

The system matrices corresponding to a projected Loewner
model of dimension r can be computed as follows

Ê = −X∗rLYr, Â = −X∗rLsYr, B̂ = X∗rV, Ĉ = WYr.

4. THE PROPOSED METHOD FOR ESTIMATING A
QUADRATIC MODEL FROM DATA

In this contribution, the proposed procedure represents a
natural extension of the method introduced in Karachalios
et al. [2019] from the case of bilinear systems to the case
of quadratic systems.

Using the classical Loewner framework introduced in Sec-
tion 3, we first fit a linear model that matches samples of
the first (linear) transfer function. Then, from samples of
the second transfer function (that includes the nonlinear
behavior), we are able to fit appropriate quadratic terms.
The data required for this procedure can be estimated from
direct numerical simulations in the time domain.

One can use the classical Loewner framework approach
to directly construct a reliable reduced-order linear model
(Â, B̂, Ĉ) of order r from samples of the first transfer
function H1(jω) in (3).

The next step is to fit an appropriate matrix Q ∈ Cr×r2

that supplements the linear model into a quadratic model.
In this direction, it is assumed that information about
the second transfer function H2(jω) in (4) is known at
2k points {jω1, . . . , jω2k}. Introduce the following vectors
r` ∈ Cr and o` ∈ C1×r for ` ∈ {1, 2, . . . , 2k}:

r` = (jω`I−A)−1B = Φ(jω`)B,

o` = C(2jω`I−A)−1 = CΦ(2jω`).
(9)

One can write the second transfer function evaluated at
jω`, ` ∈ {1, 2, . . . , 2k}, in terms of the vectors r,o∗ ∈ Cr

in (9), as follows

H2(jω`) = CΦ(2jω`)Q
[
Φ(jω`)B⊗Φ(jω`)B

]
= o`Q[r` ⊗ r`].

(10)

Denote with vQ ∈ Cr3 the vectorization of Q ∈ Cr×r2 , i.e.

vQ = [Q(:, 1) ; Q(:, 2) · · · Q(:, r2)]. (11)

From (10), we can write that (rT` ⊗ rT` ⊗ o`)vQ =
H2(jω`), ∀1 ≤ ` ≤ 2k. By collecting this 2k equalities
into a matrix format, we put together the following linear
equation:

TvQ = Z, (12)

where T ∈ C2k×r3 , Z ∈ C2k are matrices such that{
T(`, :) = rT` ⊗ rT` ⊗ o`,

Z(`) = H2(jω`).
. (13)

Finally, one can write the solution of (12) by means of the

Moore-Penrose pseudo-inverse matrix T† ∈ Cr3×2k.

More exactly, write the solution vector as

vQ = T†Z.

Afterwards, one can directly put together the recovered

matrix Q ∈ Cr×r2 based on the formula from (11).
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5. TEST CASES

In 1963, Edward Lorenz proposed a simple model to rep-
resent the unpredictable behavior of weather (see Lorenz
[1963]). He used fluid convection theory to model the
motion of a two-dimensional cell of fluid cooled from above
and warmed from below. Thus, the simplified model was
proposed

ẋ1 = −σx1 + σx2,

ẋ2 = ρx1 − x2 − x1x3,
ẋ3 = −βx3 + x1x2.

(14)

The following quantities enter the equations in (14):

(1) x1 represents the convective fluid motion;
(2) x2 denotes the horizontal temperature variation;
(3) x3 denotes the vertical temperature variation.
(4) σ and ρ are related to the Prandtl and, respectively

the Rayleigh number.
(5) β is a geometric factor.

Note that the Lorenz system in (14) can be rewritten in
the format introduced in (1). Let x = [x1 x2 x3]T ∈ R3 be
the new augmented system variable. Then, write

ẋ =

[−σ σ 0
ρ −1 0
0 0 −β

]
︸ ︷︷ ︸

A

x +

[
0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

]
︸ ︷︷ ︸

Q

(x⊗ x).

We will consider the controlled case for which an external
control input also enters the equations, i.e. only in the first
equation and without any scale.

The observed output is given by the average of variables
x2 and x3, i.e., the vertical temperature variation.

In this way, we define the appropriate scaling vectors
B = [1 0 0]T and C = 1

2 [0 1 1] that appear in the
definition of the transfer functions.

The first and second transfer functions defined in (3), and
in (4), respectively, can be explicitly computed as

H1(s) =
ρ

2(s2 + s+ σs+ σ − σρ)
,

H2(s, s) =
ρ(s+ 1)

2(β + 2s)(s2 + s+ σs+ σ − σρ)2
.

(15)

Another numerical example treated in this contribution
is the coupled van der Pol oscillator from Kawano and
Scherpen [2017].

The dynamics are characterized by the following six differ-
ential equations with linear and nonlinear (cubic) terms:

ẋ1 = x2,

ẋ2 = −x1 − µ(x21 − 1)x2 + a(x3 − x1) + b(x4 − x2),

ẋ3 = x4,

ẋ4 = −x3 − µ(x23 − 1)x4 + a(x1 − x3) + b(x2 − x4),

+ a(x5 − x3) + b(x6 − x4) + u,

ẋ5 = x6,

ẋ6 = −x5 − µ(x25 − 1)x6 + a(x3 − x5) + b(x4 − x6).

(16)

The output is chosen to be y = x3. Note that by
introducing three additional surrogate states, e.g. x7 =
x21, x8 = x22 and x9 = x23, one can rewrite the cubic

nonlinear system in (16) of order n = 6 as an order nq = 9
quadratic system.
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