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Abstract: In this paper, we propose a definition of phase for a class of stable nonlinear
systems called semi-sectorial systems from a pure input-output perspective. The definition
involves Hilbert transform as a key tool for the purpose of complexifying real-valued signals. The
proposed nonlinear system phase, serving as a counterpart of L2-gain, quantifies the passivity
and is highly related to the dissipativity. A nonlinear small phase theorem is then established
for feedback stability analysis of semi-sectorial systems. It generalizes a version of the passivity
theorem and the linear time-invariant small phase theorem.
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1. INTRODUCTION

In the classical frequency-domain analysis of single-input
single-output (SISO) linear time-invariant (LTI) systems,
the gain and the phase go hand in hand and are treated on
an equal footing in many applications. For more general
systems, the gain theory is rich and well established
while the phase counterpart somehow is inadequate and
ambiguous. It is natural to wonder what a suitable phase
definition is for those systems beyond SISO LTI systems.
The attempt to answer this question dates back for decades
(Postlethwaite et al., 1981; Owens, 1984). Recently, for
multi-input multi-output (MIMO) LTI systems, a suitable
definition of system phase on the basis of the numerical
range was proposed in Chen et al. (2019). The authors
further formulated an LTI small phase theorem which
provides a stability condition in terms of the “loop phase”
less than π. We refer the readers to Chen et al. (2019) for
more details of the MIMO LTI system phase.

For nonlinear systems, L2-gain is a fundamental quantity
used in the stability analysis and control of feedback sys-
tems from a pure input-output perspective. The classical
small gain theorem (Zames, 1966) conveys that a feedback
system maintains stability provided that its “loop L2-
gain” is less than one. However, the notion of nonlinear
system phase is not well understood. Passivity has been
considered as a phase-type counterpart of L2-gain for a
long time. A good reference on L2-gain and passivity is
van der Schaft (2017). A SISO LTI passive system, as
is well-known, provides a phase-shift of an input sinu-
soid being at most π/2. The passivity theorem (Zames,
1966; Vidyasagar, 1993) ensures the stability of feedback
interconnected passive and strictly passive systems. The
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passivity theorem thereupon is treated as a “small phase
theorem” by some researchers (Rantzer, 2019). Neverthe-
less, the passivity theorem is conservative in the sense of
requiring open-loop systems, roughly speaking, to have
their “phases” inside [−π/2, π/2]. Another important class
of nonlinear systems from a phasic point of view are coun-
terclockwise systems (Angeli, 2006) with their “phases”
inside [−π, 0]. The main purpose of this paper is to ex-
plore the notion of nonlinear system phase and utilize
this quantity in stability analysis of feedback systems. We
look forward to bringing up the phase notion to the same
footing as L2-gain in nonlinear systems.

In this paper, we first define the phase for a class of sta-
ble nonlinear systems called semi-sectorial systems here-
inafter. Second, a nonlinear small phase theorem is es-
tablished for stability analysis of feedback semi-sectorial
systems. Two essential tools are utilized in the nonlinear
system phase definition, i.e., the angular numerical range
and Hilbert transform. Using these tools in phase study is
inherited from our previous works (Chen et al., 2019; Wang
et al., 2020). The nonlinear system phase itself has a nice
physical interpretation. In brief, it undertakes a significant
role as a tradeoff between the active energy and reactive
energy. The nonlinear system phase generalizes the MIMO
LTI system H∞-phase (Chen et al., 2019). It also admits
a strong connection with static nonlinearity (Vidyasagar,
1993), passivity, counterclockwise dynamics, dissipativity
theory (Willems, 1972; Hill and Moylan, 1980) and inte-
gral quadratic constraints theory (Megretski and Rantzer,
1997). In our current studies, the proposed nonlinear small
phase theorem extends the passivity theorem when causal
stable components are considered. One common practice
of reducing conservatism of the passivity theorem is to
quantify passivity by using input/output passivity indices
(Cho and Narendra, 1968). These indices, used to measure

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors



the surplus or deficit of passivity, could be either posi-
tive or negative. This kind of characterization, however,
deviates from the phasic perspective to some extent. It
is also noteworthy that the multiplier approach (Zames
and Falb, 1968) is often adopted to reduce conservatism
of the passivity theorem by finding a suitable multiplier.
This multiplier, often as a noncausal artificial operator, is
required to meet a factorization condition which gives rise
to difficulties in practice. Roughly speaking, the nonlinear
small phase theorem provides an implicit multiplier that
is much more straightforward and intuitive from a pure
phasic perspective.

The outline of this paper is as follows. Preliminaries of sig-
nal spaces, systems and Hilbert transform are introduced
in Section 2. In Section 3, we define the phase of semi-
sectorial systems, and further develop a nonlinear small
phase theorem. Moreover, a discussion on the nonlinear
system phase and the dissipativity is provided.

2. PRELIMINARIES AND MOTIVATIONS

Let R (C, resp.) and Rn (Cn, resp.) denote real (complex,
resp.) numbers and n-dimensional real (complex, resp.)
vectors, respectively. For real or complex vectors x, denote
|x| as the Euclidean norm. For a nonzero x = |x| ej∠x ∈ C
in the polar form, its angle or phase is denoted by ∠x. If
x = 0, then ∠x is undefined. Denote C̄+ as the closed right
half-plane. Denote RH∞ as the space consisting of proper
real rational matrix functions with no poles in C̄+.

2.1 Signal spaces, operators and systems

The input-output analysis of nonlinear systems is often
built on a real signal space. We start with the L2 space,
the set of all energy-bounded Rn-valued signals

L2 :=

{
u : R→ Rn

∣∣∣ ‖u‖22 :=

∫ ∞
−∞
|u(t)|2dt <∞

}
.

The causal subspace of L2 is denoted by L2[0,∞) :=
{u ∈ L2|u(t) = 0 for t < 0}. For T ∈ R, define the trun-
cation ΓT on all u : R → Rn by (ΓTu)(t) := u(t) for
t ≤ T ; (ΓTu)(t) := 0 for t > T .

Let H be a Hilbert space over the field R. An operator
P : H → H is said to be causal if ΓTP = ΓTPΓT for
all T ∈ R, and is said to be noncausal if it is not causal.
We always assume that an operator P satisfies P 0 = 0.
We view a system as an operator from real-valued input
signals to real-valued output signals. A practical nonlinear
system is represented by a causal operator P ∈ dom(P ) ⊂
L2[0,∞) → L2[0,∞) where dom(P ) denotes the domain
of the operator. Such a system (an operator, resp.) is said
to be stable (bounded, resp.) if dom(P ) = L2[0,∞) and

‖P ‖ := sup
0 6=u∈L2[0,∞)

‖Pu‖2
‖u‖2

<∞.

Here ‖P ‖ is called L2-gain of P and it is the key quantity
used in the gain-based input-output nonlinear system
control theory. For a bounded linear operator P : H → H,
denote P ∗ as the adjoint operator of P .

Passivity is another key notion for input-output analysis
of nonlinear systems. A causal stable system P is called
passive (van der Schaft, 2017) if 〈u ,Pu〉 ≥ 0 for all

u ∈ L2[0,∞). In particular, for a SISO LTI system P (s) ∈
RH∞, this condition is equivalent to ReP (jω) ≥ 0 for all
ω ∈ R. In such a case, ∠P (jω) lies in [−π/2, π/2]. One can
see that passivity is phase-related but qualitative.

We aim at a quantifiable phasic notion of nonlinear sys-
tems. When doing this, we encounter a problem that a
practical nonlinear system can only accept and generate
real-valued signals. However, phases are usually defined
with complex numbers. Moreover, phases of SISO LTI
systems are introduced in terms of frequency responses.
These two facts reveal that complex numbers are essential
to phase definitions. Therefore, the fundamental nontrivial
question behind a nonlinear system phase definition is that
how we can appropriately complexify real-valued signals.
Our answer is to utilize Hilbert transform and the corre-
sponding analytic signals which are complex-valued and
commonly used in signal processing.

When working with complexified signals, it is insufficient
to restrict ourselves to the real signal space L2. A complex
signal space LC

2 is supposed to be equipped. Here LC
2 is the

set of all energy-bounded Cn-valued signals

LC
2 :=

{
u : R→ Cn

∣∣∣ ‖u‖22 :=

∫ ∞
−∞
|u(t)|2dt <∞

}
.

From now on, we develop the phase definition using LC
2 .

2.2 Hilbert transform

The Hilbert transform H of a complex-valued signal u(t)
is defined by the integral (King, 2009)

(Hu)(t) :=
1

π

∫ ∞
−∞

u(τ)

t− τ
dτ =

1

πt
∗ u(t)

provided that the integral exists, where ∗ denotes the con-
volution operation. The integral above is improper in the
sense of the Cauchy principal value. A simple example is
that sin(t) is the Hilbert transform of cos(t). This example
gives us an intuition that the Hilbert transform provides a
π/2 phase-shift which can be clarified conveniently using
the frequency-domain language. Specifically, the Fourier
transform of the convolution kernel 1/(πt) is given by
−jsgn(ω) where sgn(·) denotes the signum function. This

gives (Ĥu)(jω) = −jsgn(ω)û(jω) where ·̂ denotes the
Fourier transform of a signal. Hence the Hilbert transform
provides a −π/2 phase-shift for positive frequencies while
a π/2 phase-shift for negative frequencies.

In the rest of the paper, we restrict the Hilbert transform
on LC

2 . For u ∈ LC
2 , the Hilbert transform H : LC

2 → LC
2 is

well-defined and it is a noncausal linear bounded operator
possessing three favorable properties: isometry ‖Hu‖2 =
‖u‖2; anti-self-adjointness H∗ = −H; anti-involution:
H(Hu) = −u. It follows that the Hilbert transform on
LC
2 preserves the inner product and in particular it is

a unitary operator. Moreover, notice that 〈u ,Hu〉 = 0
for u ∈ LC

2 which can be deduced from the well-known
Plancherel’s theorem. This implies u(t) and its Hilbert
transform (Hu)(t) are orthogonal. The Hilbert transform
is a lossless process on account of merely generating a
phase-shift to an original signal. Therefore, it is often
utilized to generate a complex-valued signal from a real-
valued signal in signal processing. A complex-valued signal
whose imaginary part is the Hilbert transform of its real
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part is called an analytic signal. Specifically, for u ∈ LC
2 ,

its analytic representation is denoted by

ua(t) :=
1

2
(u(t) + j(Hu)(t)). (1)

In connection with the complexification of real-valued
signals in nonlinear systems, for u ∈ L2, using (1) leads
to ua ∈ LC

2 . Equipped with analytic signals, now we are
ready to define the nonlinear system phase from a pure
input-output view.

3. A NONLINEAR SMALL PHASE THEOREM

3.1 Phase of nonlinear systems

In this paper, we consider a causal stable nonlinear system
P : L2[0,∞) → L2[0,∞). Based on analytic signals (1),
the angular numerical range of P is defined to be

W ′(P ) := {〈ua ,Pu〉 ∈ C | 0 6= u ∈ L2[0,∞)} .
Such a system P is said to be semi-sectorial if W ′(P ) is
contained in a closed complex half-plane. Geometrically
for a semi-sectorial system P , we can have two unique
supporting rays of W ′(P ). Denote φc(P ) ∈ (−π, π] as
the angle from the positive real axis of the interior angle
bisector of these two rays. Then, the phase of P , denoted
by Φ(P ), is defined to be the phase sector

Φ(P ) := [φ(P ), φ(P )]

where φ(P ) and φ(P ) are called the smallest phase and
the largest phase of P , respectively, which are given by

φ(P ) := inf
06=z∈W ′(P )

∠z ∈ [φc(P )− π/2, φc(P ) + π/2],

φ(P ) := sup
06=z∈W ′(P )

∠z ∈ [φc(P )− π/2, φc(P ) + π/2].

Moreover, it is easy to see φ(P ) − φ(P ) ∈ [0, π] and

φc(P ) = 1/2
(
φ(P ) + φ(P )

)
.

Each 〈ua ,Pu〉 ∈ W ′(P ) in C is associated with the
point (Re〈ua ,Pu〉, Im〈ua ,Pu〉) in R2. When P is semi-
sectorial, there exists a real number α ∈ [−π, π] such that
Φ(P ) ⊆ [−π/2− α, π/2− α] which is equivalent to

cosαRe〈ua ,Pu〉 − sinαIm〈ua ,Pu〉 ≥ 0

for all 0 6= u ∈ L2[0,∞). Geometrically this inequality
means that the set of all points (Re〈ua ,Pu〉, Im〈ua ,Pu〉)
is contained in a closed half-plane in R2 with its normal

vector [cosα − sinα]
T

. In addition, P is said to be secto-
rial if there exists δ > 0 such that

cosαRe〈ua ,Pu〉 − sinαIm〈ua ,Pu〉 ≥ δ ‖u‖22
for all 0 6= u ∈ L2[0,∞). That is to say, the set of all points
is required to deviate from the origin along the normal
vector.

A bridge between the nonlinear system phase and the
passivity can be evidently built. Recall that a causal
stable passive system P requires 〈u ,Pu〉 ≥ 0 for all
u ∈ L2[0,∞) which is equivalent to W ′(P ) ∈ C̄+ due to
〈u ,Pu〉 = 2Re〈ua ,Pu〉 ≥ 0. Thereupon using the phasic
language, we understand that such a system P has its
phase Φ(P ) ⊆ [−π/2, π/2]. In particular, for some passive
systems we can further estimate their phases. For instance,
we can show that a static nonlinear passive sector can be
transformed to a phase sector, a subset of [−π/2, π/2]. As

- j - P

?
� j�C

6
y2 y1

e1

e2

u1

u2

−

Fig. 1. A standard feedback system for stabilization.

a consequence, the phase of a class of sector bounded static
nonlinearities is contained in the phase spread of a disk in
C. This disk is analogous to the circle in the celebrated
circle criterion (Vidyasagar, 1993).

3.2 Closed-loop stability

After defining the nonlinear system phase, we proceed to
stability analysis of feedback interconnected semi-sectorial
systems. Let us consider a standard feedback system shown
in Fig. 1, where P : L2[0,∞) → L2[0,∞) and C :
L2[0,∞)→ L2[0,∞) are two causal stable systems, e1, e2
are external signals and u1, u2, y1, y2 are internal signals.
Algebraically, we have the following equations

u = e−
[

0 I
−I 0

]
y and y =

[
P 0
0 C

]
u (2)

with u = [u1 u2]
T

, e = [e1 e2]
T

and y = [y1 y2]
T

.

Let P #C denote the feedback system. We introduce two
indispensable definitions involving feedback systems. First
of all, well-posedness of P #C is an important assumption
to guarantee that the closed-loop system (2) makes sense
as a model of a real system. We stipulate the following
feedback well-posedness adopted from Khong et al. (2013).

Definition 1. The feedback system P #C is said to be
well-posed if

FP ,C : L2[0,∞)× L2[0,∞)→ L2[0,∞)

:=

[
u1
y2

]
7→
[
e1
e2

]
has a causal inverse on the image of FP ,C .

Definition 2. The well-posed feedback system P #C is
said to be stable if ‖e 7→ u‖ <∞.

Given the definition of closed-loop stability, we are ready
to present the following main result.

Theorem 1. (Nonlinear small phase theorem). For sectorial
P and semi-sectorial C, the well-posed feedback system
P #C is stable if

φ(P ) + φ(C) < π,

φ(P ) + φ(C) > −π.

The proof of this theorem is omitted here. The result
above also holds if C is sectorial and P is semi-sectorial.
Basically, the nonlinear small phase theorem provides a
crucial condition from a pure phasic view to guarantee
the closed-loop stability. That is, analogous to that in the
small gain theorem the loop L2-gain less than one, the
loop largest phase φ(P ) + φ(C) is less than π as well as
the loop smallest phase φ(P ) + φ(C) is greater than −π
simultaneously. Two existing results can be subsumed into
the nonlinear small phase theorem. First, when P and C
are both MIMO LTI systems in RH∞, Theorem 1 reduces
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to theH∞-phase version small phase theorem (Chen et al.,
2019). Second, when P is input strictly passive and C
is passive, then Theorem 1 spontaneously reduces to a
version of the passivity theorem.

3.3 Discussions on the phase and dissipativity

Passivity and L2-gain can be incorporated in a unified
dissipativity framework. The property of dissipativeness
can be regarded as either a state-space property (Willems,
1972) or an input-output property (Hill and Moylan,
1980). We adopt the dissipativeness as a pure input-output
property in phase study. The notion of supply rates, as
an abstraction of the concept of input power, plays a
key role in the input-output theory of dissipative systems.
Two important classes of supply rates are as follows. The
first one describes passive systems, namely, a system P is
passive if it is dissipative with respect to the supply rate

s(u(t), y(t)) = u(t)T y(t)

where y = Pu. A second important class characterizes the
gain bounded systems. Concretely, a system P has its L2-
gain no greater than γ if it is dissipative with respect to
the supply rate

s(u(t), y(t)) = 1/2γ2|u(t)|2 − 1/2|y(t)|2

where γ > 0. Likewise, the nonlinear system phase,
analogous to passivity and L2-gain, can be understood
from the dissipativity theory using a new supply rate.
Before unveiling this supply rate, we present the following
proposition for semi-sectorial systems, which establishes a
connection between the half-plane containing W ′(P ) and
the corresponding time-domain inequality.

Proposition 1. For a semi-sectorial system P : L2[0,∞)→
L2[0,∞) and a constant α ∈ [−π, π], it holds that
∠W ′(P ) ∈ [−π/2− α, π/2− α] if and only if

〈u , cosαPu− sinαHPu〉 ≥ 0, ∀ 0 6= u ∈ L2[0,∞).

The proof is omitted here. On the basis of the nonlinear
system phase definition and Proposition 1, we discover
a class of supply rates describing the phase bounded
systems. We claim that a system P has its phase belongs
to [−π/2 − α, π/2 − α] if it is dissipative with respect to
the dynamic supply rate

s(u(t), y(t)) = u(t)T [cosαy(t)− sinα(Hy)(t)] . (3)

In this claim, the nonlinear system phase belongs to a sec-
tor with length π. When more accurate phase information
of a system is available, a generalization can be made by
intersecting a few sectors. For example, a system has its
phase belongs to [−π/4, π/3] if it is dissipative with respect
to simultaneous two supply rates, namely α = π/6 and
α = −π/4 in (3).

The supply rate mentioned in (3) is not a memoryless
supply rate which only depends on the present time. It
is, in fact, a dynamic supply rate. The reason is that
the Hilbert transform is a noncausal LTI operator whose
output depends on the past, present and future values
of the input. This kind of dynamic supply rates is new
while the notion of dynamic supply rates is not new.
See other dynamic supply rates such as the quadratic
differential form (Willems and Trentelman, 1998), the
counterclockwise dynamics (Angeli, 2006) and the general
dynamic supply rate (Arcak et al., 2016).
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