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Abstract: The paper proposes static optimal output feedback design that achieves linear
quadratic regulator for a single-input, single-output, continuous-time, time-invariant system.
The proposed approach constructs the closed-loop system via static feedback control, then
optimizes the initial state value representing a constant static output feedback gain. The Euler-
Lagrange equation is derived for characterizing the optimal initial state value for the finite time
quadratic cost criterion. The paper also gives some analysis regarding the optimal condition for
the static output feedback gain using the solution of the Ricatti differential equation. Finally,
the paper shows a numerical example that supports the proposed derivation of the optimal
static output feedback gain.
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1. INTRODUCTION

The linear quadratic regulator is a basic optimal control
strategy based on linear state space representations. The
standard design realizes state feedback form where the
state feedback gain is derived from the solution of the al-
gebraic Ricatti equation. Anderson et al. (1971). The com-
bined state observer and feedback formulation allows us to
realize the output feedback formulation. Gessing (2001).
Meanwhile, in practical points of view, static output feed-
back is applicable to many cases due to the conciseness of
the implementation rather than either state feedback con-
trol or the combined state observer and feedback control.
Hence, several studies on static output feedback design
have been made. Syrmos et al. (1997); Vesely (2001);
Yuan (1996). In these studies, the necessary conditions for
the optimal static output feedback gain were addressed.
However, they are nonlinear algebraic equations, which
leads to some complexity to solve the equations.

The present work also concerns a static output feedback
controller that achieves linear quadratic regulator. In con-
trast to the existing works, it focuses on a single-input,
single-output, continuous-time, time-invariant system, and
constructs the closed-loop system via static output feed-
back control, then optimizes the initial state value repre-
senting a constant static output feedback gain. The opti-
mal static output feedback gain is derived using the Euler-
Lagrange equation that characterizes the optimal initial
state value for the finite time quadratic cost criterion.
The Euler-Lagrange equation enables us to handle with
nonlinear systems. In addition, the paper also provides
analysis regarding the static output optimal feedback gain
using the Ricatti differential equation, and the static op-
timal gain can be represented using the solution. Finally,
the paper shows a numerical example that supports the

proposed derivation of the optimal static output feedback
gain.

2. PROBLEM STATEMENT

Consider a single-input, single-output, linear time invari-
ant system described by a state space representation.

d

dt
x(t) = Ax(t) + bu(t), x(0) = x0, (1)

y(t) = cTx(t), (2)

where y(t), u(t) ∈ R1 is the controlled output and input
signals of time t ≥ 0, respectively. x(t) ∈ Rn is the n
dimensional state vector of time t ≥ 0. (A, b) and (A, cT)
are stabilizable and detectable, respectively. The present
work considers the output feedback controller

u(t) = −ky(t), (3)

so that the following finite time, quadratic cost criterion
could be minimized:

J =

∫ T

0

[
qy(t)2 + ru(t)2

]
dt+ ϕ[x(T )], (4)

where k ∈ R1 is a scalar feedback gain, and q > 0, r > 0
are weighting parameters for the magnitude of output and
input signals, respectively. ϕ(x(T )) is the cost criterion at
the terminal time T . In the present work, the terminal cost
criterion is set as

ϕ[x(T )] = qfy(T )2, (5)

where qf > 0 is the terminal weighting parameter.

3. OPTIMAL OUTPUT STATIC GAIN

From Eq. (1) and Eq. (2), the closed loop system can be
described as

d

dt
x(t) = Ax(t)− kbcTx(t), x(0) = x0, (6)

Presented as late breaking results contribution
21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors



Now let the static output feedback gain k be regarded
as a state variable v(t). Since v(t) is a constant value, the
differential of v(t) turns out to equal zero. Hence, the state
space representation of the closed-loop system is expressed
as

d

dt

[
x(t)
v(t)

]
=

[
Ax(t)− v(t)bcTx(t)

0

]
, (7)[

x(0)
v(0)

]
=

[
x0

k

]
. (8)

Note that the closed-loop system Eq. (7) and Eq. (8) are
a nonlinear autonomous system, which implies there is no
external control input. In addition, the final element of the
initial state variable is unsettled, and it is handled as the
optimizing variable.

Subsequently, the section derives the optimality condition
for the the final element of the initial state variable using
a nonlinear optimal controller design approach. To start
with, let the closed-loop system Eq. (7) and Eq. (8) be
represented as

ẋv(t) =

[
fv(xv(t))

0

]
, (9)

fv(xv(t)) = Ax(t)− v(t)bcTx(t), (10)

xv(t) =

[
x(t)
v(t)

]
, xv(0) =

[
x0

k

]
, (11)

where ẋv(t) stands for d
dtxv(t). Then, the cost criterion in

Eq. (4) is described as

J =

∫ T

0

L(xv)dt+ ϕ[x(T )], (12)

where L(xv) is expressed as

L(xv) = qxTccTx+ rv(t)2xTccTx. (13)

Now, we will derive the optimal condition of the optimizing
variable k using a nonlinear optimal control approach.
From the objctive function Eq. (12) and the diffential
equation in terms of the state variable xv(t) in Eq. (11),
the Lagrange function becomes

J∗ =J +

∫ T

0

λT
v

([
fv(xv)

0

]
− ẋv

)
dt, (14)

where λv is the co-state variable. Let the co-state variable
be composed of

λT
v =

[
λT ν

]
, λ ∈ Rn, ν ∈ R1 (15)

Hence, from Eq. (7) and Eq. (8), it follows that Eq. (14)
becomes

J∗ =J +

∫ T

0

(
λTf(xv)− λT

v ẋv

)
dt, (16)

Defining the Hamiltonian H as

H(xv,λ) = L(xv) + λTfv(xv). (17)

The Lagrange function J∗ in Eq. (16) results in

J∗ =

∫ T

0

H(xv,λ)dt+ ϕ[x(T )]−
∫ T

0

λT
v ẋvdt. (18)

Consider the first variation of J∗, it follows that

δJ∗ =

∫ T

0

(
∂

∂x
Hδx+

∂

∂v
Hδv +

∂

∂λ
Hδλ

)
dt

+
∂

∂x(T )
ϕ (x(T )) δx(T )

−
∫ T

0

λT
v δẋvdt−

∫ T

0

ẋT
v δλvdt. (19)

Using the partial integration, the third and forth terms in
the right-hand side of Eq. (19) becomes

−
∫ T

0

λT
v δẋvdt−

∫ T

0

ẋT
v δλvdt (20)

= −
[
λT
v δxv

]T
0

+

∫ T

0

λ̇
T

v δxvdt−
∫ T

0

ẋT
v δλvdt (21)

= −λT
v (T )δxv(T ) + λv(0)Tδxv(0)

+

∫ T

0

λ̇
T

v δxvdt−
∫ T

0

ẋT
v δλvdt

= −λT(T )δx(T )− ν(T )δv(T )

+ λ(0)Tδx(0) + ν(0)δv(0)

+

∫ T

0

λ̇
T

v δxvdt−
∫ T

0

ẋT
v δλvdt (22)

Noting that x(0) is a fixed value, which leads to δx(0) = 0,

ẋT
v δλv = ẋTδλ, and λ̇

T

v δxv = λ̇
T
δx+ ν̇δv. Thus, Eq. (19)

is summarized as

δJ∗ =

∫ T

0

(
∂

∂x
H + λ̇

T
)
δxdt

+

∫ T

0

(
∂

∂λ
H − ẋT

)
δλdt

+

(
∂

∂x
ϕ[x(T )]− λT(T )

)
δx(T )

+ ν(0)δv(0)− ν(T )δv(T )

+

∫ T

0

(
∂

∂v
H + ν̇

)
δvdt. (23)

The variation δx, δλ, δx(T ), δv(0), δv(T ), δv indepen-
dently vary, so the following differential equation could be
obtained in order that the first variation δJ∗ = 0.

∂

∂x
H + λ̇

T
= 0, (24)

∂

∂x
ϕ [x(T )]− λT(T ) = 0, (25)

∂

∂λ
H − ẋT = 0, (26)

ν(0) = 0, ν(T ) = 0, (27)

∂

∂v
H + ν̇T = 0. (28)

The obtained differential equations are a kind of the
Euler-Lagrange equations that characterize the nonlinear
optimal control laws. They are derived for the specific
purpose of characterizing the static output feedback gain
for linear quadratic regulator.

Substituting Eq. (5), Eq. (10), and Eq. (17) into the
optimal conditions Eq. (24) ∼ Eq. (28), and using v(t) ≡
k, t ≥ 0, the Euler-Lagrange equations result in the
following differential equations.
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ẋ =Ax− kbcTx, x(0) = x0, (29)

λ̇ =− qccTx− rk2ccTx−ATλ+ kcbTλ, (30)

λ(T ) = qfcc
Tx(T ), (31)

ν̇ =− rkcTxcTx+ cTxbTλ, (32)

ν(0) = 0, ν(T ) = 0. (33)

In these differential equations, the initial value of x(0) and
ν(0) are given, and the terminal value of ν(T ) and the
terminal condition of x(T ) and λ are given in Eq. (31)
and Eq. (33). They are a so-called TPBV (Two-point
boundary valued) problem. In general, they can be solved
by a shooting method.

Meanwhile, using the properties of linear differential equa-
tions, the solution of the problem can be characterized by
using a Ricatti differential equation. In the next section,
we consider a solving way to obtain the optimal output
feedback gain k satisfying the above differentilal equations.

4. OPTIMAL GAIN CALCULATION

The section provides a calculation method of the static
output feedback gain k that satisfies the differential equa-
tion Eq. (29) ∼ Eq. (33).

To begin with, let the co-state λ be expressed as

λ(t) = P (t)x(t), (34)

where P (t) ∈ Rn×n is assumed to be the positive semi
definite matrix. Substituting P (t) into the differential
equation Eq. (30), and using Eq. (29), we get

Ṗx =− PAx−ATPx+ kPbcTx+ kcbTPx

− qccTx− r−1k2ccTx. (35)

Now, let the positive semi-definite matrix function P (t) be
determined by the following Ricatti differential equations.

Ṗ = −PA−ATP − qccT + r−1PbbTP. (36)

In order to satisfy the Eq. (31), the terminal value of P (T )
should have the following value.

P (T ) = qfcc
T. (37)

Hence, the solution of the Ricatti differential equation
Eq. (36) can be solved backwards from t = T to t = 0.
In addition, since P (T ) is a positive semi-definite matrix,
the solution of the differential equation P (t), 0 ≤ t ≤ T is
also proved to be a positive semi-definite matrix.

The next, define the positive definite function V (t) as

V (t) = xTP (t)x. (38)

By calculatin the derivative of V (t) and using the Ricatti
differential equation Eq. (36), we get

V̇ (t) =− xTqccTx− xTr−1k2ccTx

+ xT(rkc− Pb)r−1(rkcT − bTP )x. (39)

Integrating Eq. (39) from t = 0 to t = T , it follows

V (T )− V (0) =−
∫ T

0

xTqccTx+ xTr−1k2ccTxdt

+

∫ T

0

xT(rkc− Pb)r−1(rkcT − bTP )xdt

(40)

Hence, we finally get∫ T

0

xTqccTx+ xTr−1k2ccTxdt+ V (T )

= V (0) +

∫ T

0

xT(rkc− Pb)r−1(rkcT − bTP )xdt.

(41)

The left-hand side of Eq. (41) is equivallent to the
quadratic cost criterion J defined by Eq. (4). Therefore,
the minimization of Eq. (4) is equivalent to the second
term of the right-hand side of Eq. (41). Namely, the opti-
mal static gain is expressed as

kopt = arg min
k

∫ T

0

xT(rkc− Pb)r−1(rkcT − bTP )xdt,

(42)

where x is the solution of the differential equation Eq. (29),
and P is the solution of the Ricatti differential equation
Eq. (36). From Eq. (42), it follows that the static optimal
output feedback gain is calculated using the solution of the
Ricatti differential equation as well as the state feedback
case.

5. NUMERICAL EXAMPLE

Consider the following second order linear state space
model.

d

dt

[
x1(t)
x2(t)

]
=

[
0 1
1 −1

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t), (43)

y(t) = [ 1 0 ]

[
x1(t)
x2(t)

]
,x(0) =

[
1
0

]
, (44)

For the system, the linear quadratic optimal regulator
problem was considered. The quadratic cost criterion was
set as

J =

∫ T

0

[
y(t)2 + u(t)2

]
dt+ y(T )2, (45)

Namely, the weighting parameters are q = qf = r = 1,
and both T = 10 was applied. At first, a shooting method
was applied to solve the TPBV problem in Eq. (29) and
Eq. (33). As a result, the optimal static output feedback
gain was k = 1.6404. Fig. 1 shows the simulation result.
from the figure, we can see that the obtained static output
feedback gain achieves the control objective. The next,
after solving the Ricatti diffential equation Eq. (36), the
static output feedback gain was solved using Eq. (42). Fig.
2 shows elements of the solution of the Ricatti diffential
equation. The obtained static optimal output feedback
gain is k = 1.6786, which is almost same as the solution
using a shooting method. From the result, it follows that
the static optimal feedback gain using the Ricatti equation
also achieves the control objective.

6. CONCLUSION

The paper proposed static output feedback design that
achieves linear quadratic regulator for a single-input,
single-output, continuous-time, time-invariant system. The
proposed approach constructs the closed-loop system via
static feedback control, and the optimal condition for the
initial state value for the finite time quadratic cost crite-
rion was derived using the Euler-Lagrange equation. The
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Fig. 1. Simulation resut of static optimal output LQ
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Fig. 2. Solution of Ricatti differential equation

paper also gave analysis regarding the optimal condition
for the static output feedback gain using the solution of the
Ricatti differential equation. Finally, the paper showed a
numerical example that supports the proposed derivation
of the optimal static output feedback gain.
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