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Abstract: Missions involving rapid and large-angle attitude maneuvers have been conceived
in astronomical and earth observation satellites in recent years. Since the rotational motion of
a spacecraft in such missions is nonlinear, it will be required to design an attitude control
system that takes into account nonlinear motion. As an actuator capable of generating a
large torque is also going to be required, it will also be necessary to consider characteristics
of an actuator in designing a control system. Actuators capable of generating a large torque
include reaction control system (RCS). RCS gives an on/off input as it uses the reaction force
from fuel injection by thrusters, it can generate a large moment. In addition, the control
system of current application satellites normally uses both RCS and reaction wheel (RW)
conventionally used for attitude control. This paper considers large angle attitude maneuver
of spacecraft by a combination of RCS and RW. To this end, characteristics of RCS and RW
are defined, and a model for control system design is derived. Then, we design a nonlinear
controller so that the closed-loop system becomes input-to-state stable (ISS) using the concept
of backstepping approach. Finally, the effectiveness of proposed control method is verified by
numerical simulations.
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1. INTRODUCTION

Missions involving rapid and large angle attitude maneu-
vers have been conceived in astronomical and earth obser-
vation satellites in recent years (Kamiya et al. (2006); So-
mov et al. (2008)). Since the rotational motion of a space-
craft in such missions is nonlinear, it will be required to
design an attitude control system that takes into account
nonlinear motion. As an actuator capable of generating a
large torque is also going to be required, it will also be
necessary to consider characteristics of an actuator in de-
signing a control system. Actuators capable of generating
a large torque include control moment gyroscope (CMG)
and reaction control system (RCS). While a CMG can
generate a larger torque in comparison with an reaction
wheel (RW) conventionally used for attitude control, there
is a singularity where it cannot generate a torque to a
certain direction (Wie et al. (2001)). It is thus necessary to
consider avoiding such a singularity in designing a control
system. On the other hand, while an RCS gives an on/off
input as it uses the reaction force from fuel injection by
thrusters, it can generate a large moment just as a CMG
does and has a simple structure compared with a CMG
and no problem of avoiding a singularity. In addition, the
control system of current application satellites normally
uses both RCS and RW.
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Fig. 1. Block diagram of control system including quan-
tizer.

Authors thus proposed an attitude control method using
NMPC based on the conception of control using both RCS
and RW which (1) rapidly makes an attitude reach the
neighborhood of the target attitude by an RCS and (2)
performs high-precision control in the neighborhood of the
target attitude by an RW (Sakamoto et al. (2016)). While
this method is a very effective one as it also gives the
design conditions for the weighting matrix in the terminal
cost that ensures the stability of a closed loop system,
computational complexity becomes an issue as it requires
solving a nonlinear optimization problem on-line. On the
other hand, for problems of controlling a linear system
with an on/off or quantized input, a method has been
proposed for designing a continuous controller ensuring
the stability of a closed loop system composed of the
continuous controller and a quantizer as shown in Fig. 1,
which has no on-line computational complexity issue as a
fixed controller is used (Ninomiya et al. (2004); Koike and
Chida (2012)). It is also conceivable to use this controller
as a backup controller in case a nonlinear optimization
problem with NMPC fails to be solved within a sampling
time. This study constructs a nonlinear control method
based on the idea in Koike and Chida (2012) as a solution
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Fig. 2. Actuator nonlinearity.

to the problem of spacecraft attitude tracking control using
both RCS and RW.

The following notations are used throughout the paper.
Let R denotes the real numbers. Rn and Rn×m are the
sets of real vectors and matrices, respectively. For real
vector a ∈ Rn, aT is the vector transpose, ∥a∥ denotes
the Euclidean norm, and a× ∈ R3×3 is a skew symmetric
matrix

a× =

[
0 −a3 a2
a3 0 −a1
−a2 a1 0

]
derived from the vector a = [a1 a2 a3]

T ∈ R3. For a real
symmetric matrix A, A > 0 implies the positive definite
matrix. The identity matrix of size 3× 3 is denoted by I3.
λmax
A ∈ R and λmin

A ∈ R are the maximal and the minimal
eigenvalues of the matrix A, respectively.

2. RELATIVE EQUATION OF MOTION OF
SPACECRAFT

The rotational motion equations of the spacecraft fixed
body frame {b} are given by the equations (1) and (2) if
the modified Rodrigues parameters (MRPs) are used as
the attitude parameters (Tsiotras (1998)):

σ̇ =
1

2

{
1− ∥σ∥2

2
I3 + σσT + σ×

}
ω = G(σ)ω, (1)

ω̇ = J−1
{
−ω×Jω + u

}
, (2)

where (1) is the kinematics equation that represents the
attitude of {b} with respect to the inertial frame {i}, (2) is
the rotational dynamics equation, σ ∈ R3 [-] is the MRPs,
ω ∈ R3 [rad/s] is the angular velocity, u ∈ R3 [Nm] is
the control torque (input), and J ∈ R3×3 [kgm2] is the
moment of inertia.

We considered a control problem in which a spacecraft
tracks the desired attitude (MRPs) σd ∈ R3 and angular
velocity ωd ∈ R3 in fixed frame {d}. The MRPs of relative
attitude σe ∈ R3 and the relative angular velocity ωe ∈ R3

in the frame {b} are given by

σe =
(1− ∥σd∥2)σ − (1− ∥σ∥2)σd + 2σ×σd

1 + ∥σ∥2∥σd∥2 + 2(σd)Tσ
, (3)

ωe = ω − Cωd, (4)

where C ∈ R3×3 is the direction cosine matrix from {b} to
{d} that is expressed as follows (Meng et al. (2009)):

C = I3 +
8(σe

×)2 − 4(1− ∥σe∥2)σe
×

(1 + ∥σe∥2)2
. (5)

Substitution of the equations (3) and (4) into the equations

(1) and (2) using the identity Ċ = −ω×
e C yields the

following relative motion equations:

σ̇e = G(σe)ωe, (6)

ω̇e = J−1
[
− {ωe + Cωd}× J {ωe + Cωd}

−J
{
Cω̇d − ω×

e Cωd
}
+ u

]
. (7)

We assumed that σ and ω are directly measurable, and J
is known. In addition, we assumed the following about σd,
ωd, and ω̇d.

Assumption 1. The desired states σd, ωd and ω̇d are uni-
formly continuous and bounded for all t ∈ [0, ∞).

As both RCS and RW are used as actuators in this paper,
an RCS output ui = uRCS

i (i = 1, 2, 3) for the command
uC
i takes discrete values, with a dead zone (Fig. 2(a)), and

an RW output ui = uRW
i takes continuous values, with a

saturation (Fig. 2(b)). Now, for the magnitude uRCS
i,dead of

the RCS dead zone and the RW saturation value ūRW
i , let

|uRCS
i,dead| ≤ |ūRW

i |. Then, if both RCS and RW are used,

an output from the input converter (quantizer) ϕ can be
considered to be applied to a control input ui (Fig. 2(c)).

ui = ϕ(uC
i ) =


ūRCS
i , if uC

i > ūRCS
i

uC
i , if

∣∣uC
i

∣∣ ≤ ∣∣ūRW
i

∣∣
−ūRCS

i , if uC
i < −ūRCS

i

. (8)

The block diagram of the control system is shown in Fig. 3.
Now, define a quantization error

δ = ϕ(uC)− uC
(
ϕ(uC) =

[
ϕ(uC

1 ) ϕ(u
C
2 ) ϕ(u

C
3 )

]T)
(9)

that occurs when RCS is used and assume that the norm
of quantization error satisfy

∥δ∥ ≤ δ̄, ∀t ≥ 0, (10)

where δ̄ is a positive constant. By equation (9) and u =
ϕ(uC), equation (7) is transformed into

ω̇e = J−1
[
− {ωe + Cωd}× J {ωe + Cωd}

−J
{
Cω̇d − ω×

e Cωd
}
+ uC + δ

]
. (11)

and can be regarded as a system to which bounded
disturbance δ is applied. This control system is shown in
Fig. 4. In the next section, equation (11) taken to represent
the dynamics in the design model.
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Fig. 3. Block diagram of control system. Fig. 4. Equivalent expression of block diagram of control
system.

3. NONLINEAR ATTITUDE TRACKING CONTROL
USING RCS AND RW

Firstly, the command value (control law) uC for the closed-
loop system of (6) and (11) to be input-state stable
(ISS) is derived under assumption of equation (10) when
only RCS as actuator is used. Secondly, we indicate that
the closed-loop system using both RCS and RW can be
asymptotically stabilized, i.e.,

(σe, ωe) → (0, 0) (t → ∞).

The control law is derived based on the concept of back-
stepping. In addition, Lemmas when using the derivation
of the control law are shown below.

Lemma 2. For all σe ∈ R3, the following equations hold
(Tsiotras (1998)):

σT
e G(σe) = bσT

e , G(σe)
T
G(σe) = b2I3(

b =
1 + ∥σe∥2

4
> 0

)
.

3.1 Control law design when only RCS as actuator is used

Derivation of virtual input α Assume that ωe
k is the

virtual input to subsystem (6), and define the stabilizing
function such that

ωe = α = −f1σe (12)

where f1 > 0 ∈ R is the feedback gain. The candidate
Lyapunov function for (6) is defined as

V1 =
1

2
∥σe∥2. (13)

From Lemma 2, the differential of (13) along the trajecto-
ries of the closed-loop system becomes

V̇1 = σT
e G(σe)α

= bσT
e α

=−f1b∥σe∥2 < 0, ∀σe ̸= 0 (14)

since b > 0 and f1 > 0. Therefore, if ωe → α (t → ∞),
then σe → 0.

Derivation of control torque uC The error variable be-
tween the state ωe and α is defined as

z := ωe − α = ωe + f1σe. (15)

The control input uC that makes the closed loop system
with state variables σe and z to be ISS is derived.

From (15), subsystem (6) becomes

σ̇e = G(σe)z − f1bσe, (16)

and the dynamics with respect to z is

ż = ω̇e + f1σ̇e

= J−1
[
− {z − f1σe + Cωd}× J {z − f1σe + Cωd}

−J
{
Cω̇d − (z − f1σe)

×
Cωd

}
+ uC + δ

]
+f1 {G(σe)z − f1bσe} . (17)

Now, by setting uC to

uC = {z − f1σe + Cωd}× J {z − f1σe + Cωd}

+J
{
Cω̇d − (z − f1σe)

×
Cωd

}
−f1J {G(σe)z − f1bσe} − bσe − f2z, (18)

(17) becomes

ż = J−1 (−bσe − f2z + δ) , (19)

where f2 > 1 ∈ R is the feedback gain. The candidate
Lyapunov function for (16) and (19) is defined as

V2 = V1 +
1

2
zTJz. (20)

Since (14) becomes

V̇1 = bσT
e z − f1b∥σe∥2

from (15), the differential of (20) along the trajectories of
the closed-loop system becomes

V̇2 = −f1b∥σe∥2 − f2∥z∥2 + zδ. (21)

By using completing square, (21) is given by

V̇2 ≤−f1b∥σe∥2 − (f2 − 1)∥z∥2 + 1

4
∥δ∥2

≤−χTQχ+
1

4
∥δ∥2

≤−λmin
Q ∥χ∥2 + 1

4
δ̄2 (22)(

Q = diag {f1bI3, (f2 − 1)I3} , χT =
[
σT
e zT

])
.

Therefor, the condition of ISS (Khalil (2001)) holds since
Q > 0.

Summarizing the above, the following theorem can be
obtained.

Theorem 3. If the quantization error δ satisfies (10) and
feedback gains f1, f2 are f1 > 0, f2 > 1, then the state
variables σe and ωe of the closed-loop system given by
equations (6) and (11) with the control law (18) becomes
ISS, and state variable χ converge to the following set S.

S :=

χ ∈ R6 | ∥χ∥ ≤

 1

2
√

λmin
Q

 δ̄

 . (23)

3.2 Stability of closed loop system when using both RCS
and RW

When both RCS and RW are used, the control input uC
i

in the case of
∣∣uC

i

∣∣ ≤ ∣∣ūRW
i

∣∣ is a continuous value by RW
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Fig. 5. Switching maneuver

Fig. 6. Block diagram of digital control system.

0 10 20 30 40 50 60 70 80

-10

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

-6
-4
-2
0
2
4
6

10
-3

0 10 20 30 40 50 60 70 80

-0.012
-0.008
-0.004

0
0.004
0.008
0.012

(a) θ

0 10 20 30 40 50 60 70 80

-100

-50

0

50

100

0 10 20 30 40 50 60 70 80

-0.4

-0.2

0

0.2

0 10 20 30 40 50 60 70 80

-0.5

-0.25

0

0.25

0.5

40 45 50 55 60 65 70 75 80

-1.2
-0.9
-0.6
-0.3
0
0.3
0.6

(b) u

Fig. 7. Simulation results.

and δ ≡ 0 from (8) and Fig. 2(c). From this fact, when the
state χ enters the inside of the following set S̄

S̄ :=
{
χ ∈ S |

∣∣uC
i

∣∣ ≤ ∣∣ūRW
i

∣∣ (i = 1, 2, 3)
}

(24)

by RCS, the state χ can be asymptotically stabilized, i.e.,
(σe, ωe) → (0, 0) (t → ∞) by switching from RCS to RW.

4. NUMERICAL SIMULATION

The properties of the proposed method are discussed in
the numerical study. For this purpose, parameters setting
of simulation is as below:

J =

[
7050 −0.536 43.9

−0.536 2390 1640
43.9 1640 6130

]
, σ(0) =

[
0
0
0

]
, ω(0) =

[
0
0
0

]
,

ūRCS
i = 100 Nm, ūRW

i = 1 Nm (i = 1, 2, 3),

f1 = 2, f2 = 1000.

The initial values σ(0) correspond to Euler angles of 1-2-
3 system of θ(0) = [θ1(0) θ2(0) θ3(0)]

T = [0 0 0]T [deg].

The desired states σd, ωd and ω̇d in this simulation are
the switching maneuver as shown in Fig. 5. As shown
in Fig. 6, since the control system of the spacecraft is a
digital control system, zero-order hold is assumed and the
sampling interval T [s] is set to T = 1 in this simulation.
The results of the numerical simulation are shown in Fig. 7.
It can be seen that switching maneuver has been achieved
by appropriately switching between RCS and RW.

5. CONCLUSION

In this paper, we considered the spacecraft attitude track-
ing control problem that requires agile and large angle
attitude maneuvers using both RCS and RW and proposed
a nonlinear control method. In the proposed method, it
is indicated that the closed-loop system when using RCS
only becomes ISS under the assumption that the quanti-
zation error is bounded, and the closed-loop system can
be asymptotically stabilized when both RCS and RW are
used. The effectiveness of the proposed control method
is verified by numerical simulations. Minimizing fuel con-
sumption by RCS injection, robustness against parameter
fluctuations by fuel injection, and optimal switching be-
tween RCS and RW will be subject to future work.
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