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Abstract—We propose an extension of spatial evolutionary 
games which enables simulation of evolutionary changes in 
cancer cells population resulting from anticancer therapies 
treated as external interventions. There are two non-standard 
issues used in this type of games. The first one is based on the 
assumption that heterogeneity of tumor populations takes 
place on the cell level which is realized by the use of multilayer 
spatial structures. The other one is related to variability of 
entries of pay-off tables representing changes in external 
resources which describe anticancer treatment.  

Keywords-evolutionary games, anticancer therapies, 
heterogeneity. 

  EXTENDED ABSTRACT 

Recent works have focused on the evolutionary dynamics of 
tumors and point out that factors important at the 
evolutionary level, like survival and proliferation, are the 
pivotal points in cancer development as a heterogeneous 
population with different cells[1]. Moreover, an additional 
key-factor (for game theory applications) is the impact of 
the ecosystem or the interactions between tumor cells and 
their environment enabling modeling changes in the cancer 
ecosystem in the context of different anti-cancer therapeutic 
strategies [2]. From the game theory point of view, during 
simulation changes appear in the frequency of occurrence of 
parameters or phenotypes, like those in simulations of 
resources for the mean-field model. Further development of 
spatial games (as we present here) may provide additional 
possibilities of simulating therapies (treatments) by 
affecting different players (as elements on the spatial lattice) 
at a different level or even in a different way. In particular, 
elimination of as many cancer cells as possible may not be 
essentially the best strategy. It may be demonstrated that 
destroying only some fraction of the cancer cells (with a 
particular phenotype) may be far more efficient. Thus, using 
spatial games with additional simulations that impact the 
game (either by a payoff matrix or spatial structures on the 
lattice) provides a possibility to study that conclusion using 
a vast amount of different configurations (especially for 
various initial lattices and simulated environments). 
Moreover, we also emphasize strongly that evolutionary 
games are mainly used to study changes in a tumor’s 

phenotypic heterogeneity and its impact on the evolutionary 
dynamics of cancer (possibility of different interactions, e.g. 
cooperation). However, the importance of heterogeneity is 
at the population level, meaning that the population contains 
different homogenous cells, which is obviously an important 
limitation arising (coming) from replication dynamics 
usage. The application of mixed spatial evolutionary games 
(MSEG) [3] additionally allows for modeling heterogeneity 
on the cell level within the population, which may be more 
appropriate for the biological reality. We propose to endow 
evolutionary game models with changes of the phenotypes’ 
adjustment during the transient generations performed by 
the parameters in the payoff matrix which determine the 
fitness resulting from different interactions between players. 
These changes represent alteration of access to external 
resources which, in turn, may describe anticancer treatment. 
In the case of spatial games, these functions are represented 
by an additional lattice where another and parallel game 
based on cellular automata is performed. The additional 
lattice representing the evolution of resources increases only 
the dimension of the lattice in the MSEG [4]. Moreover we 
consider both 2D and 3D spatial structures that, in our 
opinion, is an exception rather than a rule in literature 
devoted to simulations of spatial evolutionary games. 
To illustrate advantages of our approach to the analysis of 
combined anticancer therapy we consider the model which 
is based on two classical models of Tomlinson [5]. The 
model contains four different strategies/phenotypes of cells: 
- A cell produces a growth factor and the benefit impacts all 
the neighbors and the cell itself (A); 
- A cell produces a cytotoxic substance against nearby cells 
(P); 
- A cell is resistant to the cytotoxic substance (Q); 
- Strategy which shall be considered as a baseline (no prod- 
uction of the cytotoxic  substances,  no resistance  to  it, no 
growth factor) (R). 
Parameters used to defne the measure of fitness are given 
by: 
z: baseline fitness (set to 1 in the context of  the model) 
e: cost of producing the cytotoxin 
f: disadvantage of being affected by the cytotoxin 
g: benefit of harming other cells 
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h: cost of resistance to the cytotoxin 
i: cost of proangiogenic factor production 
j: beneficial effect of receiving the growth factor 
r: external resources stimulating growth (e.g proangiogenic 
growth factors) 
c: external cytotoxic resources (e.g. cytotoxic drugs). 
 
The pay-off matrix for four phenotype model with resources 
has the following form: 
 
             A                      P                         Q                 R 
A    1-i+j+r/2-c/2   1+j-e+g+r/2-c/2   1+j-h+r/2   1+j+r/2-c/2 
P    1-i+j-f+r/2-c/2 1-f-e+g+r/2-c/2    1-h+r/2      1-f+r/2-c/2 
Q    1-i+j+r/2-c/2    1-e+r/2-c/2          1-h+r/2       1+r/2-c/2 
R    1-i+j+r/2-c/2    1-e+g+r/2-c/2       1-h+r/2       1+r/2-c/2 
 
Such model was already analysed by us in the context of 
mean field games [6]. For a polymorphism (coexistence) of 
all strategies, each frequency should be contained within the 
interval (0,1). To track the evolution of different phenotypes 
in the population, it is feasible to simulate equations for 
replicator dynamics. They show how frequencies of diffrent 
strategies change over time, thereby inuencing the 
composition of the studied population. For inference 
analysis in this game, the result when all phenotypes coexist 
is taken as a reference. Relatively to this result the cost of 
cytotoxic production has been increased by 0.1 and equals 
to the benefits from harming the neighbors. Similarly, the 
adaptation of P-cells has been decreased, and at the same 
time, one of the polymorphic conditions has not been 
fulfilled. Because of that, P-phenotype almost disappears 
from the population, but the same effect is observed for Q-
cells. It could be explained by the self-correlation between 
these two phenotypes in fact, and the main assumption of 
the model is that Q-cells arise as the evolutionary reaction to 
the toxic substance produced by P-phenotype. The fraction 
of phenotype P is directly proportional to the cost of 
resistance h and inversely proportional to the losses of 
interaction with toxic substances f. Namely, the more the 
cells are wounded (including the P-cells contact with 
another P-cell and excluding the contact with the resistant 
Q-cells) by the cytotoxic substance, the adjustment of  the 
phenotype P decreases. Similarly with phenotype Q, a 
fraction of which depends on the ratio of the parameters 
related strictly to phenotype P. So the greater the benefits  
from the harming of the neighboring cells, the greater the 
adaptation of Q phenotype. This can be explained by that in 
contact between P and Q, the formerdoes not receive the 
bene_ts. Within the reference results, the neutral phenotype 
R is the dominative one. The analysis could be supported 
through generating the final frequency of occurrences for 
parameter changes. This kind of representation does not 
allow to study the dynamic of phenotype changes in time. 
The machinery of EGT supported by the replication 
dynamics enables analysis of the evolution of phenotype 

structure in time within cell populations; nevertheless, it 
gives no information about the spatial distribution of these 
phenotypes in tumors. Such possibilities are created by the 
methodology of spatial evolutionary games theory (SEGT) 
[7] which enables a study of players allocation. The lack of 
perfect mixing is a crucial diffrence between non-spatial and 
spatial models Within the reference results the neutral 
phenotype R is the dominative one, then P and also Q 
appear for the spatial game. There is no obvious explanation 
for these results since the phenotype R is not better adjusted 
neither in contact with the rest of phenotypes nor with itself. 
In the case of the second game (for increased e) the 
phenotype R also dominates for deterministic and 
quantitative reproductions (the result similar as for non-
spatial game). The diffrence has occurred in the 
probabilistic reproduction, where Q-type has been displaced 
from the population. Alternatively spatial games could be 
presented in a way similar to meanfield models. Those 
outcomes are more focused on the dynamics of the model 
through the passing generations than on the spatial 
structures. Introduction of external resources may result in 
qualitative changes in the phenotype evolution The idea is to 
consider effects of those two factors by changing only two 
parameters (r and c in this case). The in-house software was 
created to perform simulations in 2D and 3D cases. All 
simulations were performer for 2D or 3D torus of size 
32x32 or 10x10x10 cells. 
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