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Abstract— We address the problem of designing experiments
to obtain guaranteed and as good as possible parameter
estimates for linear systems subject to bounded disturbances.
First, we review some existing results relevant for the set—
membership parameter estimation and outer-bounding. Based
on these results, we approach the a priori experimental design
problem. By considering a min—-max setup, a selection approach
is derived to choose experiments which provide maximum
information. To this end, the (worst case) volume of the
anticipated consistent parameter set is considered as selection
criterion. By considering parameter bounding intervals as
criterion, identifiability of the parameters can be analyzed. The
proposed approach allows us to investigate the role of initial
conditions for identification and how to compensate the effects
of disturbances on desired estimates.

I. INTRODUCTION

Obtaining as good as possible estimates of the parameters
of a mathematical model describing a dynamic process
is an ubiquitous problem, required for purposes such as
model selection, prediction, or control synthesis. Very fre-
quently, it is difficult to determine the models parameters
directly; therefore input—output experiments are performed
to obtain (typically uncertain) measurements, which are
subsequently used for estimation and uncertainty analysis.
Anterior though, it is important to address the question
whether the parameters can be estimated at all, and to adjust
the experimental conditions, i.e. the initial conditions and
inputs, to gain maximal information from the experiment.

The parameter estimation and experimental design prob-
lem has been studied extensively in statistical context, see
e.g. [17], [23] and references therein. Assuming that the
measurement error is characterized by a known probabil-
ity density function, e.g. the Gaussian normal distribution
(white noise), various techniques exist to derive (optimal
and unbiased) estimators, e.g. least squares minimization or
maximum likelihood, in case of parameter estimation (see
e.g. [17], [11]). For experimental design, typically the Fisher
information matrix (e.g. [17]) is utilized, e.g. by optimizing
its determinant (D—optimal design). However, as pointed
out in [14], the information matrix depends on the true
system parameters, which are not known when designing
an experiment a priori. The issue has been recognized in
literature, where several approaches, i.e. a sequential design
(e.g. [32]), Bayesian approach (for review see e.g. [10]),
or min—max design (see [23] and references therein) have
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been considered. Sometimes, however, a statistical approach
is not applicable, for example because the probability density
assumption is questionable, not enough data is available to
infer the distribution ([21], [30]), or when guaranteed bounds
of the parameters are required.

An alternative approach, known as a set-membership or
bounded error description, is to assume the uncertainty to
be bounded, but otherwise unknown. Advantageously, this
approach allows to derive the set of consistent parameters,
rather then an isolated estimate, guaranteed to contain all
possible consistent solutions. Early references of this ap-
proach are [31] and [26] in the domain of state estimation,
and for parameter estimation of linear (output) systems see
e.g. [30], [21], [4] and the references therein. The bounded
error description has also been applied to general estimation
problems of dynamic nonlinear systems, i.e. in regression
form [20], using interval analysis (see [15] and references
therein),or employing a relaxation based approach (e.g. [7],
[24]). For linear systems, as considered in this note, the
consistent parameter set is polytopic, however it might be
complicatedly shaped. For this reason, many methods exist
to determine simple—shaped sets which are guaranteed to
contain the set of consistent parameters. For example, el-
lipsoids [26], [27] and [13] have been considered, as well as
orthotopes ([19]), zonotopes ([29], [22]), or homothety ([6]).

In this contribution, we outline a novel min—max experi-
mental design and identifiability analysis approach for linear,
discrete time systems, in membership setting. We extend
our previous one—step ahead approach [6] to the multi—step
case. Advantageously, the proposed method does not require
knowledge of the “true” parameters, and enables to design
experiments which minimize the volume of the anticipated
consistent parameter set, which corresponds to the D—optimal
design in statistical setting. Thereby, a maximum of informa-
tion is provided. The proposed approach allows furthermore
to investigate the influence of the disturbance on the quality
of the estimates, and how to compensate for this at the stage
of prior design, for particular cases.

For this, disturbances are assumed unknown, but bounded;
the robust experimental design problem is approached in
a min-max setting, where the volume (and dimension) of
the consistent parameter set is considered as selection cri-
terion. By considering parameters bounding interval length
as selection criterion, a sufficient criterion for parameter and
model identifiability is derived, i.e. when point—estimates are
obtainable. The methods are illustrated by several examples.

Paper Structure: We first outline the considered setup
in Section II. In Section III, we review shortly the set—



membership parameter identification approach [6] following
the ideas of set—dynamics employed in [2], [1]. In Section
IV, we focus on the min—max experimental design prob-
lem, proposing a solution approach to the general N-step
experimental design problem. In Section V, we relate the
results to the (N-step) identifiability problem. In Section
VI, we present an identification strategy based on one—step
experiments. We conclude the paper with a discussion and
an outlook.

Basic Nomenclature: The sets of non—negative and non—
negative real numbers are denoted, respectively, by N, R .
All sets considered in the remainder are compact and con-
vex sets (unless otherwise stated). The collection of non—
empty compact sets in R™ is denoted by Com(R™). For
shorthand of notation, we denote z;=(21 k, 22,k - - - » Zny k)~
and up=(u1 k, U2 k,--.,Un, )" the state and input vectors
at time k. The integer sequence is denoted by N[a:b]i{a, a+
1,...,b} witha e N,b € N;a < b.

II. SETUP

We consider linear systems of the form:
Tht1 = A()\):L‘k + B()\)uk + wy, (D

where zp € R™=, up € R™ and wy € R™= are the current
state, control and the unknown disturbance respectively, z1
is the successor state, and A € R™ denotes the (unknown)
system parameters. The system structure is known, i.e. the
matrices A(\), B()) are given by:

nx n

AN =D AN, BO) = Bi\;, 2)
=1 i=1

where A = (A1, A2,..., A, ), and for all ¢ € {1,2,...,nx},
the matrix pairs (A;, B;) are known and are of compatible
dimension, i.e. (A;, B;) € RM=>Ms x RM=X"u,

We furthermore assume some (limited) prior knowledge on
the parameters and the disturbances to be available, i.e. prior
bounding sets of the parameters and the disturbance. We
denote the sets by A and W respectively, and assume for
simplicity that both sets are polytopic (compact and convex)
sets in R™ and R™* respectively,

A: =
wWw. =

{/\ e R™ : Mo\ < Zo}, 3)
{w eR™ : Myw <y},

with known matrix—vector pairs (My,ly) € R™*™ x R™
and (M, l,) € RToX™ x R,

Remark 1: The parameters A are not known apart from
being bounded, though they do not change with time. In
contrast, the disturbances w can take different values in time,
known only to be bounded.

For ease of notation, we denote for any state/control pair
(zg,ur) € R™ x R™ and for any ¢ € {1,2,...,n)},

Az + Biug, 4

(Y1 (2k, ur) yo(@r, ur) - Yny (Th,ur)),

Y(a:k,uk) =

where y;(xg,ur) € R, Y(xg,ur) € R"*" No-
tice that, under the construction above, for any (x,u),
Y(ack,uk))\ = A()\):Ek; + B()\)uk.

Finally, when referring to an N—step experiment, we mean
an instance F(zg,u) with feasible initial condition zy €
Xo C R™ and feasible N-step input sequence u = {uy €
U }kN;()l, where X; C R"= denotes an initial condition, and
U an input domain. Performing such an experiment yields,
typically disturbed, state sequences {x) € R™=} .

With this setup, we next review the set—membership
parameter estimation problem. This lays the basis for the
experimental design and identifiability problems considered
thereafter in Sections IV and V.

III. SET-MEMBERSHIP PARAMETER ESTIMATION

Parameter estimation is the task of obtaining as good
as possible parameter estimates considering the available
measurements.

We assume given, besides prior knowledge on the initial
parameter and disturbance bounds (3), a possibly disturbed
state sequence {xj}I_, obtained from an (N-step) experi-
ment E(zg,w). For simplicity, we consider all states to be
measured; the more general case can be found in [7], [24].
The set—-membership parameter estimation problem takes
then the following form:

Problem 1 (Parameter identification): Estimate the set
On C A of parameters that is consistent with the avail-
able experimental data {z }2_, {ur}r 4, i.e. estimate the
consistent parameter set

Oy = {)\GA: VkEN[O:N_l], (5)
Thi1 = A()\)Ik + B()\)uk + wy,
wg € W}

A. Exact Description

Recall that the model parameters A are known only to the
extend that A € A and that they do not change over time
(i.e. the values of \ are, at any time instance k € N, equal
to its values at the beginning of the process). However, the
disturbance w is not known and it can take, at any point in
time, any arbitrary value in the set W. Following the set—
dynamics ideas presented in [2], [1], we have:

Proposition 3.1 (Parameter set dynamics): The consistent
parameter set (5) is described by the dynamic map

Or+1 = F(O, Tpt1, T, uk), 6)

where F'(-,-,+,-) : Com(R™) x R x R" x R™ — R"
is given by:

F(@k,xk+1,xk,uk) = {/\ €0 : $k+1—Y(:rk,uk))\ S W}
)
The proof can be found in the appendix. Hence, parameter
identification reduces to the determination of the sequence
{©k Y, of consistent parameter sets, for the given initial
parameter set ©p = A, and the available data {zy}_,
and {ug }5 . In the considered linear—polytopic setting, the
computation of the sequence {©}~_, simplifies then:



Proposition 3.2 (Consistent parameter set): The consis-
tent parameter sets O, k € {1,2,..., N} are given by:

O Z{/\EA: Mk/\Slk}, (8)

with ©, = F(A, {z;}¥, x0, {u;}~"), where for all j €
{1,2,...,k}:

_ M, (b=
Mj o <—Mwy<xj—l7uj—l)> ’ lj - <lw - Mu}x]> ’ (9)

The proof is provided in the appendix. The exact consistent
parameter set (8) is constructed recursively. In the case of
parameter estimation, usually only few inequalities of (8)
contribute to the boundary of the consistent parameter set.
Redundant constraints can be neglected, e.g. following [18],
to obtain a minimal representation of the consistent parame-
ter set. Note that in the case of N—step experimental design
as considered in Section IV, the state sequence {zy}h_; is
not determined.

B. Outer—Bounding

For the considered system class, the consistent parameter
sets O (8) are convex polytopes, see Prop. 3.2, which may
become fairly complicated if the dimension of the states,
parameters, or IV is large.

In practice, one is often interested in the uncertainty
interval associated with a parameter )\;, i.e. the axis—aligned
projection of the consistent parameter set ©y (8) onto the
respective coordinate axis. Its length provides a measure of
the quality of the estimate, analog to the confidence intervals
considered in a statistical setting.

The lower and upper bound which define the (compact)
uncertainty interval of the i~th parameter, i € {1,...,n)},
are obviously given by the values of the minimum and
maximum criterion:

A = min {Ai}, A = max {A;}
s.t. A€ Op.

The length of the (inner and outer) bounding interval of a
parameter \; € Oy is denoted by

6 =N — A (11)

For ease of presentation, we define the bounding orthotope
as the Cartesian product of all n) bounding intervals, i.e.

O(@N)iol(@]v) X Og(@N) X ... X Onk(eN)-

By definition, O(©y) is Lebesgue measurable (see e.g.
[25]), and its volume Vol(-) : Com(R™) — R, takes
the form

Vol (0(Oy)) = ﬁfng.
i=1

The bounding orthotope and in particular its volume
are used later on as selection criterion for experimental
design, and can be obtained by (10) solving 2n) linear

programs, e.g. using the simplex method ([9]). Alternatively,
the bounding orthotope can be obtained via a single, though
larger, geometric optimization, which is required later on for
experimental design, as follows:

Proposition 3.3 (Bounding orthotope): The collection of
bounds of ©p and respective volume are obtained by:

0@©8) = agmax {[[ &’ -A")} a2
AA

s.t. Vi € N[l:n)h ng)
2 con, A coy.
The volume is simply obtained by replacing “argument”
with “max” in (12). The proof immediately follows from
construction.
Remark 2: Notice that 2n, (independent) parameteriza-

> A,

tion’s are introduced, denoted by A(i) and X(Z) for 1 €
{1,2,...,ny}, and that A = AV, .. AN =
(X(ll), e ,XLT)). Problem (16) can be formulated as a
geometric program, i.e. as (log—concave) determinant maxi-
mization problem (see e.g. [9]).

Remark 3: Note that by construction it holds that ©41 C
Oy, hence O(Op41) C O(Oy) and éf“ < (%, i.e. the uncer-
tainty intervals sequences are monotonically non—increasing
(compare Ex. 1). Also, whenever Vol (O(0y)) = {0} 12,
O = {0}, thus providing fact that the model (1) is invalid
(inconsistent with the measurements).

Lllustrative Example 1

As example we consider the following uncertain linear

system
A2 As
Th+1 = )\3 /\4 Tk + )\6 Uk + Wg

with n, = 2, n,, = 1, and n,, = 2. The disturbances w; =
(w1 g, w2 )T are bounded, 0 < w1 < 0.2,0 < way < 0.2,
and the six parameters are unknown to the extend

13)

A=09={AeR®:VieNyg,0< N <1}

We generate artificial measurements (N = 30) using the
reference parametrization \* = (0.1,0.2,0.1,0.3,0.2,0.1)T.
We consider two experiments with same initials zg =
(0,0)T, same input sequence ug = 1, {ux ~ {0,1}}3°.
Two different realizations are obtained by considering two
independent random disturbance sets {u}fz,i ~ [0,0.2]}%°,
i = {1,2}, by which two sequences {x\"}30 i = {1,2}
are obtained.

For this two measurement sequences, we estimate the
dynamics of bounding intervals for the six parameters ac-
cording to Prop. 3.3. The results are depicted in Fig. 1.
The example demonstrates that although parameters intervals
can be narrowed, the estimates quality strongly depends on
the actual disturbances. We show later that % < 0.2 and
0§ < 0.2 is guaranteed for any disturbances w, € W and
for all reference parameters A\* € A (see Ex. 4).
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Fig. 1. Orthotopic outer bounding. Evolution of the bounding intervals
0;(©y,) for two realizations of the same experiment, shown in different
colors. Reference values are indicated by the black lines.

IV. EXPERIMENTAL DESIGN

We now turn on the problem of designing optimal ex-
periments in membership setting. Particularly, we aim to
plan experiments which lead to a minimal volume consistent
parameter set in worst—case, ideally a singleton set, thereby
providing a maximum of information. Since the actual pa-
rameters are unknown, “worst—case” here means the most
unfavorable disturbances and parametrization (in A).

Obviously, this problem is much more challenging then
parameter estimation, since, apart from prior knowledge (3),
little further information is available. Actual measurements
are not known and can take any feasible value. However, we
can exploit the information that N consecutive, singleton,
and feasible measurements will be available.

We denote by z={z, € R"=}_ | a feasible state se-
quence, and consider again the system (1) with prior bounds
on parameters and disturbance (3). Controls of the domain
U = {u:u € R"} can be applied, and the initial condition
can be chosen from zog € Xy C R™. The experimental
design problem in min—-max setting takes the following form:

Problem 2 (Experimental design): Plan an experiment
E(xg,u) with initial condition zg € Xy and N-step input
sequence u={u, € U }ivz_ol, which minimizes, for all
possible sequences z, the volume of the consistent parameter

set Oy (8), i.e. find

(x5, u™, 2%) = argmin max {Vol (On)},
To,Uw z

(14)

where Vol(-) : Com(R™) — R defines the selection cri-
terion, and the consistent parameter set Oy = F(A, z, zg, u)
as in (8)—(9) a family of polytopes.

Note that z* denotes a “worst—case” state sequence, i.e. a
feasible sequence for which the “anticipated” consistent
parameter set O attains maximum volume. It is important
to note that besides the volume Vol(O ), various selection
criteria can be considered as shown later.

Problem 2 is in general hard to solve. To obtain the desired
guaranteed results we propose the following two relaxations.
First, determining the exact volume of polytopic sets is very
difficult for the general case ny > 3. Therefore, we consider
instead the volume of the bounding orthotope Vol (O(Oy)).
This provides a (outer) bound of the actual volume, and
hence guarantees can still be provided. Second, we consider
a discrete domain of initial conditions and the control set,
eg z9 € Xqg = {z; € R*™, j € {1,2,...,n,,}}, and
up € Ug = {u; € R™, j € {1,2,...,n,,}} respectively.
This can be obtained, for example, by a suitable sampling
or quantization.

With this simplifications, Problem 2 consist in selecting
the experiment E(z, u*), for which the volume of O(Oy)
is minimized in worst—case.

Proposition 4.1 (Experimental selection):  The experi-
ment E(x§, w*) (15) minimizes the volume of the consistent
parameter set O(Oy) (16) for worst—case disturbances,
where

(x5, u*) = argmin {Vol (O(ON))"}, (15)
=Ny . )
Vol (0©x)" = max{ [T -A"} @6
zAA G0
s.t. Vi € N[l:n;]»

(@)

AW >0 30 coy, A0 c oy,

Hereby, Vol(-) : Com(R™) — R, Oy = F(A, 2,20, u)
as in (8)—(9). Proof immediately follows from construction
(Prop. 3.2 and Prop. 3.3).

Analogously to (12), 2n, independent parameterization’s
are introduced. It is important to note that for one—step ahead
(N =1), Problem (16) is log—-max concave, i.e. a geometric
program (see e.g. [8]). We discuss this important case in
more detail in Section VI; for the general case, problem (16)
is non—convex due to bilinear constraints, which requires
solving polynomial programs. To this end, global optimiza-
tion approaches can be considered, for example the method
of moments [16], branch and bound procedures [28], or using
a relaxation approach as in [7].

The computational complexity of the proposed approach
depends in general on the number of considerable experi-
ments. When considering a discrete input and initial domain
as in Prop. 4.1, the proposed experimental selection approach
requires solving n, dani programs (16). Therefore, when
designing an optimal experiment for a particular problem,
it might be useful to successively increase N and to truncate
suboptimal branches.

Remark 4: Note that for the trivial case n), = 1,
Vol(O(N)* = Vol(A\)*, ie. the input design problem



TABLE I
N-STEP EXPERIMENTAL DESIGN APPROACH. WORST-CASE VOLUME

Vol(O(©n))* AND ASSOCIATED GUARANTEED BOUNDING INTERVALS

L1, ...,04 FOR EXPERIMENTS E(z¢ = 0, {uk} by,
N input Volume bounding intervals
up w1 u2 | O©ON) O L2 /3 Oy
1 0 - - led 10 10 10 10
1 - - 5e2 10 10 10 0.5
0 0 - led 10 10 10 10
2 1 - 5e2 10 10 10 0.5
1 0 - 0 10 0 10 0.5
1 - 0 10 0 10 0.5
0 0 led 10 10 10 10
0 1 5e2 10 10 10 0.5
1 0 0 10 0 10 0.5
3 1 0 10 0 10 0.5
0 0 0 0 0 0.5 0.5
1 1 0 0 0 0.66 0.5
1 0 0 0 0 0.5 0.5
1 0 0 0 0.66 0.5
is solved exactly. Also for the case n) = 2, where the

consistent parameter set is an area whose measure can be
explicitly described using vertex enumeration (e.g. following
[3]), outer—bounding is not required.

Remark 5: The proposed N-step experiment selection ap-
proach can also be scheduled in closed loop, i.e. by updating
the “initial” parameter set when a new measurement is
available, and considering a “moving horizon” approach.

Hllustrative Example 2

Consider the system

A1 A 0 0
Tht1 = <>\; 02) ~xE + ()\4> “up + <wk> , A7)

where the disturbance wy can take any values in 0 < wj <
0.5, and the four parameters are unknown to the extend

41}

We now consider the case where the initial condition xy =
(0,0)7 is fixed, and aim to design worst case optimal inputs,
considering binary input signals U = {0,1}. Remind that
future states z = {x;}) are unknown. Tab. I shows the
results.

As a conclusion, already a three—step experiment provides
improvement of the outer-bounds for the parameters in
worst—case, to the extend provided in Tab. 1. Here, the
sequences u = {1,0,0} and w = {1,1,0} are distinguished
as optimal inputs, minimizing the volume of the (anticipated)
consistent parameter set and the associated bounding inter-
vals.

A={NeR: 1<)\ <11i={1,...

V. IDENTIFIABILITY

An important conclusion can be drawn from the case
Vol (O(Oy))" = 0 for a feasible experiment E(zg,u).
Then, by construction, at least one parameter bounding
interval is a singleton set, i.e. @r = 0 for some i (in
worst case). Hence, the respective parameter can be uniquely
identified in N-steps by E(xo,u), in worst case.

Note that identifiability, in classical notion, is concerned
with the theoretical existence of unique solutions [5], and
hence strictly a mathematical problem. The identifiability
problem in the worst—case membership setting, as considered
here, is rather motivated from a practical point of view,
namely whether point estimates of parameters can be actually
obtained. To this end, we have:

Proposition 5.1 (N-step identifiability): Given a system
as in (1), with unknown parameters A € A, bounded distur-
bance as in (3), and a feasible N—step experiment E(xq,u).
If (N =0 with

eF =max {(\ - )} (18)

s.t. XZ‘ZA“XG(@N,AEGN,

Oy = F(A, z,z0,u) (8)—(9), then \; is identifiable in N
steps by E(xg,w). If for all i € {1,...,n,} we have ¢V =
0, then model (1) is said identifiable (in N steps) by the
experiment F(zq,u).

Note that Prop. 5.1 differs from Prop. 4.1 regarding the
selection criterion, where in latter the (worst—case) volume
of the consistent parameter set is considered, in former the
(worst—case) length of the bounding interval of a particular
parameter.

Prop. 5.1 provides a sufficient criterion for parame-
ter/model identifiability. This notion of identifiability directly
extends to the robust case; we say a parameter is (u—)
estimable if £~ < p < ¢9 with u € R, a desired threshold
and ¢! the initial bounding interval of parameter \; (possibly
unbounded).

As a consequence, the experimental selection approach
Prop. 2 necessitates a prior selection criterion such as iden-
tifiability (Prop. 5.1), or more generally the dimension (i.e.
box—counting dimension [12]) of the consistent parameter
set O . To this end, the objective of (16) is tailored to

i= =N\
Vol (0(0n))" =max { [ &)},
Z,0\ i=1,isj
i.e. a reduced orthotope excluding identifiable parameter(s)

A (15).

jFor example, reconsider Ex. 2, Tab. I; the experiment with
the input sequence u = {1,0,0} allows to identify A1, Az,
and to estimate A3, A4 with u = 0.5 < 10 in worst case,
i.e. for any admissible disturbances.

VI. ONE-STEP DESIGN

In this section, we explore the possibility to estimate all the
model parameters with one—step experiments. We consider
systems as in (1) with single—entries

)\11:1 - )\m )\gl - )\gm

A A A S AB
An=|" By=|" 0 T

/\ﬁl T )‘:}n )‘nl e )‘Em

where A and A] (Vi,j € Njp.p,j, | € Npiip,)) denoting
the unknown parameters. Without loss of generality, we



furthermore focus on the case where the disturbances are
unknown with

W = {’LU e R™ :Vie N[l:nm]awi <w; < wl}

For this simplified setup, the following “learning approach”
based on one—step experimental design can be considered:

First, choose for all j € {1,...,n,} one-step experiments
of the form

EY(cje;,u=0), (19)

where e; € R"» denote the unit—vector of the j—th coordinate
and ¢; € R the respective amplitude scalar. Second, we
choose for all [ € {1,...,n,} one-step experiments of the
form

ED(zg =0,dsey), (20)

where e¢; € R™ denote the 1-th unit vector and d; € R the
input’s amplitude. Then:

Proposition 6.1 (One—step design): n, +n, one—step ex-
periments (19)—(20) are sufficient to determine all unknown
parameters )\‘3- and )\ﬁ Vi, € Njiin,), | € Nj11,,]) Where

,

A
l(z(j)_@)g : < l(z(j)_w),
Cj A Cj

A
LTeo_m<| @ | <l
d; B d;

)\nml

with 20, 2()) € R™ denoting the state measurements.

The proposed approach offers two important insights. First,
the role of the initial conditions for system identifiability, i.e.
by choosing experimental initial conditions from a Cartesian
basis of n, linearly independent initial states, the compo-
nents of the system matrix A can be inferred. This is general
not possible when fixing the initial condition. In this case,
the N—step experimental design approach can be used. And
second, since the length of the parameter bounding intervals
depend on the amplitudes c; and d;

E()‘?j) . (w;

el

1
B —
—w;), {(Ay) = Tl (W; — w;),
||
the influence of the disturbance on parameter bounding
intervals decreases with increasing amplitudes.

Lllustrative Example 4

Reconsider the system given in Ex. I; to infer the six
model parameters, we apply Prop. 6.1, i.e. the proposed n, +
n, = 3 one-step experiments, considering low E and high
amplitudes E. The results are provided in Tab. IL

Evidently, the six unknown parameters can be deduced
from the proposed three (independent) one—step experiments
as shown in Tab. II. Furthermore, considering experiment
E®) as considered also in Ex. 1, we have ¢} < 0.2 and
£ < 0.2; this provides proof that for all possible realizations
(of experiments as in Ex. 1), A5 and A\g (compare Fig. 1) are
estimated to the extend p < 0.2 (after one—step).

TABLE I
ONE-STEP “LEARNING APPROACH”. PARAMETER BOUNDING

INTERVALS £1, . .., £ FOR LOW (E) AND HIGH (E) INTENSE ONE—STEP

EXPERIMENTS.
experiment bounding intervals
# o ug | 41 Lo L3 Ly L5 Ls

ED (@0 0 [02 1 02 1 1 1
E®  (0,1) 0 |1 02 1 02 1 1
E®)  (0,0) 1|1 1 1 1 02 02
EY (10,00 o0 002 1 002 1 1 1
E® (010 o0 |1 002 1 002 1 1
E® o0 101 1 1 1 002 002

Comparing the two sets of experiments E(*) and F(i),

i = {1, 2, 3}, it is demonstrated that high intense experiments
countervail the effects of disturbances, i.e. high ample stimuli
provide better estimates.

VII. CONCLUSIONS

In this contribution, we proposed a guaranteed approach
for a priori experimental design and identifiability analysis of
linear discrete time systems subject to bounded disturbances.
Assuming bounded disturbances is, in many practical cases,
more realistic and less demanding than a statistical error
distribution [21]. It enables to derive the set of consistent
parameters and bounding intervals, analog to confidence in-
tervals in statistical error setting. This set is constructed using
available prior information, and posterior measurements in
case of parameter estimation; then, the consistent parameter
set is a convex polytope. For experimental design, it defines a
family of polytopes, where the worst case volume provides
a guaranteed upper bound, used as selection criterion. By
considering (worst—case) parameter intervals, a sufficient
criterion for N—step parameter identifiability is provided,
i.e. when singleton parameter estimates are guaranteed.

When investigating the insightful one—step ahead case, the
role of initial conditions, inputs and their scaling is outlined.
As shown, n, + n,, one-step experiments are sufficient to
identify all parameter of a fully parametrized system, where
the influence of the disturbance on the estimates can be
decreased by increasing the respective amplitudes. This is
provided when the initial conditions can be manipulated
freely, i.e. a basis of linear independent initial state vectors
can be considered for experimental design. Conversely, one—
step experiments are in general, when the initial conditions
are restricted, not sufficient to identify the model parameters.

The proposed selection approach applies to the general
multi-step case, and its computational complexity is propor-
tional to the number of considerable experiments. Therefore,
when examining a larger anticipation horizon (i.e. N is
large), a successive experimental design approach consider-
ing truncations might be advantageous. In many applications
however, e.g. in systems biology where frequently the exper-
imental possibilities are limited, the approach likely allows
to evaluate all the possibilities a priori, and to select the most
informative experiments.



Future work will address extension of the guaranteed
approach to input—output systems and to polynomial systems
using relaxations [7], and experimental design for purpose of
model selection.
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APPENDIX

Proof 1 (Prop. 3.1): Let O, xk11, 2, ur be given. By
(6)—(7) we have O 1 = F(Op, Tpt1, Tk, ug), with
F(@k7xk+1,xk,uk) = {)\ €0: Tht1 — Y(xk,uk))\ S W}

={N €O xp11 — Y(xg, up)\ = wg, wp € W}

={A €Oy : xpy1 = ANz + B(Nug + wg, wi, € WH.
Since ©g=A, it follows that Oy = F (O, Tpt1, Tk, Ug)
generates the desired sequence {O)}._, of the consistent
parameter sets. [

Proof 2 (Prop. 3.2): Pick a j € {0,1,...,4,...,N — 1}
and assume that ©; = {A € A : M;\ < [;}. Then, by
Prop. 3.1,

F(©;, 41,3, u;)
= {)\ S @j T4l — A(/\)x] — B(/\)u] S W}

Oj+1

Hence, from the description of W (3) and ©;, we have:
Oj+1 ={A €0, Mj1A <ljn}

with Mj4q,041 as in (9). Since ©p=A, the claim follows
by induction. [J



