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An Efficient Algorithm for Nonlinear Model
Predictive Control of Large-Scale Systems
Part II: Experimental Evaluation for
a Distillation Column
Ein effizienter Algorithmus für die nichtlineare prädiktive Regelung großer Systeme
Teil II: Experimentelle Erprobung an einer Destillationskolonne

Moritz Diehl, Rolf Findeisen, Stefan Schwarzkopf, Ilknur Uslu, Frank Allgöwer, Hans Georg Bock, Ernst Dieter Gilles,
and Johannes P. Schlöder

In the first part of this paper, that appeared in the last issue, an efficient approach for the
online optimization in nonlinear model predictive control (NMPC), the so called real-time it-
eration scheme, was introduced. In the present second part we confirm experimentally the
efficiency of the proposed strategy considering the control of a pilot-scale distillation column.
In the experiments the column is used for the high-purity separation of a binary mixture of
methanol and n-propanol. The differential-algebraic first principles model used for control is
stiff and has more than 200 states. Despite the large state dimension the algorithm is able to
provide newly optimized control inputs every 20 seconds on a standard PC. Even for rather
large disturbances and without the need for much tuning the closed-loop shows good per-
formance and does respect the required constraints. The presented results demonstrate that
nonlinear model predictive control can even be applied for the control of large-scale systems
and does lead to satisfying performance, if the outlined solution approach is used.

Im ersten Teil der vorliegenden Arbeit, der in der letzten Ausgabe at 12(2002) erschienen ist,
wurde ein effizientes Verfahren für die Echtzeit-Optimierung in der nichtlinearen prädiktiven
Regelung (NMPC) vorgestellt, das sogenannte Echtzeit-Iterations-Schema. Im vorliegenden
zweiten Teil wird anhand der Regelung einer Destillationskolonne im Pilotanlagenmaßstab
experimentell die Effizienz des vorgestellten Verfahrens bestätigt. In den Experimenten wird
die Kolonne zur hochreinen Trennung eines binären Gemisches aus Methanol und n-Propanol
verwendet. Das zur Regelung verwendete differentiell-algebraische Systemmodell ist steif
und besitzt mehr als 200 Systemzustände. Trotz der hohen Systemordnung ist der Algorith-
mus in der Lage, auf einem Standard PC alle 20 Sekunden neuoptimierte Steuergrößen zur
Verfügung zu stellen. Selbst für sehr große Störungen zeigt der geschlossene Kreis gutes
Regelungsverhalten und erfüllt die geforderten Beschränkungen, wobei der notwendige Auf-
wand zur Einstellung der Reglerparameter minimal ist. Die präsentierten Ergebnisse zeigen,
dass die nichtlineare prädiktive Regelung bei Verwendung des vorgestellten Verfahrens auch
für große Systeme einsetzbar ist und zu guten Regelungsergebnissen führt.
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1 Introduction

Online optimization of dynamic process models and non-
linear model predictive control (NMPC) have attracted in-
creasing attention over the past decade [1; 4; 17; 26; 32].
Among the advantages of optimization based control are
the flexibility provided in formulating the objective and the
process model, the capability to directly handle equality
and inequality constraints, and the possibility to treat un-
foreseen disturbances fast. It is in particular the availability
of detailed nonlinear process models – that are increas-
ingly being used for thedesignof industrial processes –
which promises to make NMPC an appealing alternative to
conventional control.

While linear model predictive control can be considered as
somehow mature by now and is widely used in process
industry applications [21; 27; 31],nonlinear MPC is still
being perceived as an academic concept rather than a prac-
ticable control strategy. The difficulty of solving the arising
optimal control problems in real-time is widely regarded as
the principal obstacle to a practical application of NMPC.
In a recent survey [32] it is pointed out that “speed and the
assurance of a reliable solution in real-time are major lim-
iting factors in existing applications.” Reliable optimization
methods for NMPC shall ideally be able to treat large-scale
nonlinear first principle models as they are, without further
need of modelling or model reduction.

In Part I of the paper we presented an efficient algo-
rithm for optimization in NMPC, the so calledreal-time
iteration scheme. The approach is based on an iterative
solution method for dynamic optimization, namely the dir-
ect multiple shooting technique [6; 22; 23], which is able
to treat system models described bydifferential algebraic
equations(DAE) and has been successfully used in many
applications [5; 11; 24]. In the context of NMPC, where
a sequence of neighboring optimization problems is treated,
solution information of the previous problem can be ex-
ploited efficiently by aninitial value embeddingstrategy
for initialization of the current problem. Building on the
favourable properties of direct multiple shooting and the
initial value embedding – which have already been ob-
served and compared for various NMPC schemes [15; 29]
– the real-time iteration scheme[8; 10] only performs one
optimization iteration per sampling instant. The calculated
approximated solutions can be shown to stay close to the
exact optimal solutions, while the sampling time is reduced
to a minimum, the cost of only one solution iteration, and
feedback can be obtained much more frequently. Further-
more, the calculations of each real-time iteration can be
split up in a preparation phase and a feedback phase. Since
the feedback phase is much faster than the preparation
phase, the delay between the measurement and the resulting
input is reduced considerably.

In its actual implementation, the real-time iteration scheme
is realized as part of the optimal control package
MUSCOD-II [12; 22], which offers several advantages in
the context of practical online optimization. Among these

are the possibility to provide the DAE model equations as
generic C or Fortran-Code or in the gPROMS modelling
language [24; 30], to make use of efficient state-of-the-art
DAE solvers (e.g. DAESOL [3]), or to employ an exist-
ing parallelization in the portable MPI standard [24] in time
critical cases.

In this paper we experimentally verify the applicability of
the real-time iteration scheme for NMPC considering the
control of a pilot-plant distillation column located at the
Institute for System Dynamics and Control Engineering of
the University of Stuttgart. The distillation column has been
the subject of a number of theoretical and experimental
studies for dynamic modelling [18; 25] and control [16; 19;
20; 33; 34; 36]. Here, we show that the real-time iteration
NMPC scheme can be applied to this process and achieves
good control performance, without much tuning. The pre-
sented results demonstrate that nonlinear model predictive
control can even be applied nowadays for the control of
large-scale systems and leads to satisfying performance if
the real-time iteration scheme is used.

This part of the paper is structured as follows: In Sect. 2
we describe the pilot-plant distillation column and we out-
line the model used for optimization. The controller setup
and the open-loop optimal control problem are described
in Sect. 3, and the experimental results are presented in
Sect. 4.

2 Description of Process and Model

We consider the control of a pilot-plant distillation column.
In the configuration considered here the column is used for
the high purity separation of a binary mixture of Methanol
and n-Propanol. It has a diameter of 0.10 m and a height of
7 m and consists of 40 bubble cap trays. The overhead va-
por is totally condensed in a water cooled condenser which
is open to atmosphere. The reboiler is heated electrically.
A flowsheet of the distillation system is shown in Fig. 1.
The preheated feed stream enters the column at the feed
tray as saturated liquid. It can be switched automatically
between two feed tanks in order to introduce well defined
disturbances in the feed concentration.

In the considered configuration, the manipulated variables
are the heat input to the reboilerQ and the reflux flow
rate Lvol. The control aim is to maintain high purity spe-
cifications defined in terms of the distillate and boiler
product concentrationsxD and xB despite disturbances in
the volumetric inlet feed streamFvol and the inlet feed con-
centrationxF. Furthermore, constraints on the maximum
and minimum allowable bottom and distillate volumetric
streamsBvol and Dvol as well as on the maximum heat
input to the boiler must be satisfied.

The column is controlled by a distributed control system
(DCS) that is used for the lower level control. Basic con-
trol loops for the levels, the flow rates, and the heat input
are realized on the DCS. To allow the consideration of
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Figure 1: Flowsheet of the distillation column.

computationally more involved control schemes the DCS
is connected to a LINUX workstation with a 1 GHz AMD
Athlon processor. All higher level control algorithms, in
particular the state estimator and the real-time iteration
scheme, are implemented on this workstation.

2.1 System Model

Depending on the modelling assumptions different kind of
models [18; 25; 28; 35] can be obtained for the dynamics
of the distillation column. In first numerical tests, where
the feasibility of the real-time iteration scheme was veri-
fied by simulations, a 164th order model of the process was
used [15; 29]. The practical applicability was confirmed in
a first series of closed-loop experiments [13]; however, the
observed closed-loop performance suffered from oscilla-
tions which are probably due to neglected hydrodynamic
effects that havenot been captured by the 164th order
model.

In this paper, we therefore use a slightly refined equilib-
rium stage model that includes hydrodynamics, resulting
in a considerably stiffer and larger system model which
is considered to capture the main features of the column
dynamics. The model [8] is based on the following assump-
tions: total condenser, negligible vapor holdup, variable
liquid holdup, constant pressure drop along the column,
perfect mixing; the mixture is at equilibrium temperature;
Murphree efficiency is applied for each tray.

The model is described by means of material and energy
balances, hydrodynamic effects, equilibrium relationships
for each tray and for the reboiler and the condenser. The
resulting model consists of 82 differential equations and
122 algebraic equations. The differential statesx(t) include
the molar liquid holdups and the methanol concentrations
on each tray plus in the reboiler and the condenser. The
algebraic statesz(t) include liquid flows, vapor flows and
temperatures on each tray in addition to temperatures in the

reboiler and condenser. The input to the system is given by
u = (Lvol, Q)T . The overall resulting DAE system has in-
dex one and fits into the structure assumed in the first part
of the paper.

2.2 Identification of Unknown System
Parameters

Some of the model parameters – e.g. tray holdups, Mur-
phree coefficients, pressure losses – have been estimated
by parameter identification. To obtain suitable data sets
for the identification step changes in the feed rateFvol

and concentrationxF, the reflux rateLvol, and heat input
Q were performed. Measurements ofall tray temperatures
were taken for least squares fitting of the simulated to the
observed behavior.

2.3 Treatment of Feedstream Disturbances

For the controller design we consider the feed flowFvol and
feed concentrationxF as external disturbance inputs. In the
prediction, it is assumed that they will not change. To con-
sider them in the dynamic optimization and state estimation
we augment the differential state vector by the two trivial
differential equationsḞvol = 0 and ẋF = 0. This formula-
tion conveniently allows to react to changes by the initial
value embedding. Note that offset free control is obtained
by implicitly determining the steady state in the dynamic
optimization as explained in the following section.

3 Controller Setup

The control aim is to maintain the specifications on the
product concentrationsxB andxD in reboiler and condenser
despite disturbances. As usual in distillation control, the
product concentrations are not controlled directly – instead,
an inferential control scheme which controls the deviation
of the concentrations on tray 14 and 28 from a given set-
point is used. These two concentrations are much more
sensitive to changes in the system than the product con-
centrations. If the concentrations on tray 14 and 28 are
kept sufficiently constant one can assume that the prod-
uct purities are also safely maintained. As concentrations
are difficult to measure, we control instead the traytem-
peratures, which correspond directly to the concentrations
via the Antoine equation. The desired temperatures on tray
14 and 28 are denoted in the following byTref

14 and Tref
28 .

Furthermore, the setpoint of the controls is denoted byuS.

The stage costL used in the NMPC open-loop objective
is formulated as the integral of a least squares term (for
simplicity no units are assumed)

L(z, u, uS) :=
∥∥∥∥∥
[

T14− T ref
14

T28− T ref
28

]∥∥∥∥∥
2

2

+0.05‖u−uS‖2
2 ,

where the second term is introduced for regularisation pur-
poses only since the used control is not of key relevance.
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3.1 Open-Loop Optimal Control Problem

The terminal penalty termE appearing in the general
NMPC formulation presented in Part I of the paper is
often introduced in NMPC for stability and performance
purposes [1; 7; 14; 26]. Slightly deviating from the prob-
lem formulation in Part I, we will approximate a suitable
terminal penalty term by dividing the prediction horizon
into a control horizon[0, Tc] and a (long) prediction inter-
val [Tc, Tp] on which the controls are fixed to the setpoint
values uS, similar as proposed in [7; 15]. The objective
contribution of the prediction interval provides an upper
bound of the neglected future costs that are due after
the end of the control horizon, ifTp is choosen suffi-
ciently long. For the experiments we use a length ofTp −
Tc = 36 000 seconds that leads to sufficiently good perform-
ance in all experiments.

The resulting open-loop NMPC optimal control problem to
solve at each sampling instant is given by:

min
u(·),x(·),uS

Tp∫
0

{ ∥∥∥∥
[

T14− Tref
14

T28− Tref
28

]∥∥∥∥
2

2

+ 0.05‖u−uS‖2
2 dτ

}
(1)

subject to the model DAE

B(·)ẋ(τ) = f(x(τ), z(τ), u(τ))

0 = g(x(τ), z(τ), u(τ)) for τ ∈ [0, Tp] .

Where the initial values for the differential states are given
by:

x(0) = x(tk).

The state and control inequality constraints are formulated
by

h(x(τ), z(τ), u(τ)) ≥ 0 τ ∈ [0, Tp] ,

where

h(x, z, u) :=




D(x, z, u)− Dmin

B(x, z, u)− Bmin

u−umin

umax−u




define the lower bounds for the fluxesD(x, z, u) and
B(x, z, u) that are determined according to the model as-
sumptions, which should always maintain small positive
values, and lower and upper bounds for the controls.

The steady state controluS is determined implicitly by the
requirements thatu is constant on the long prediction inter-
val

u(τ) = uS for τ ∈ [Tc, Tp] ,
together with the final state constraint[

T14(Tp)− Tref
14

T28(Tp)− Tref
28

]
= 0 .

An alternative formulation of the steady state condition can
be found in [8].

3.2 On-Line State Estimation

To perform the prediction at every recalculation timetk the
full state information must be available. In practice, how-
ever, not all states can be measured directly. In the given
setup we assume that only the three temperaturesT14, T21,
T28 and the feedflowFvol can be measured directly and
are available for control purposes. To obtain an estimate
of the 82 differential system states and of the feed distur-
bancexF a variant of an Extended Kalman Filter (EKF) is
used.

In contrast to an ordinary EKF the implemented estima-
tor [8] can incorporate additional knowledge about the
possible range of states and parameters in form of bounds.
This is necessary as the tray concentrations need to be
constrained to physical meaningful values in the interval
[0, 1]. A comparison of estimated and measured tempera-
ture profiles can be found in Fig. 5 – note that only the
temperaturesT14, T21 and T28 are available to the state
estimator.

3.3 Coupling with the Process Control System

The overall closed loop NMPC setup is shown in Fig. 2.
The three processes – data acquisition, state estimation
and real-time optimization – were running independently
and communicating only via input and output files in such
a way that a breakdown of one component did not cause
an immediate breakdown of the others. Missing new inputs
were automatically replaced by old values. This construc-
tion made the whole system sufficiently stable against
variations in computation and data transfer times.

The EKF operates with a sampling time of 10 seconds. The
length Tc of the control horizon and the control discretiza-
tion are chosen such that the computation time for one real-
time iteration does not exceed the relevant time scale of the
system dynamics or of the occurring disturbances. Based
on numerical experiments on the available workstation
and on the requirement that one real-time iteration should
not exceed 20 seconds, we found thatTc = 600 seconds
with 5 control intervals each of 120 seconds length is
a good choice. Note that the control interval length of
120 seconds is 6 times longer than the desired sampling
time of 20 seconds – conceptionally this does not pose any
difficulty.

Figure 2: Closed-loop NMPC setup.
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4 Experimental Results

The NMPC scheme has been tested on various scenarios [8;
13]. Here, only two scenarios, a step change in the feed
flow rate Fvol, and a large disturbance scenario where the
column was driven with too low reflux flow for over ten
minutes are presented.

4.1 Feed Flow Change

The closed loop response of the scheme to a step change
in Fvol is shown in Fig. 3. In the left column the closed
loop result of the proposed real-time iteration scheme is
shown. The right column shows the closed loop perform-
ance of an existing PI control scheme [13], which is usually
employed to control the column. It consists of two single-
input/single-output PI loops, one of which uses the heat
input Q to control the temperatureT14, whereas the other
uses the refluxLvol to control the temperatureT28.

For the shown results starting from a steady state, the feed-
flow is increased att = 1000 seconds by 20%. The NMPC
controller based on the real-time iteration scheme is able
to complete the transition to the resulting new steady state
in less then 1000 seconds after the feed flow change, with
a maximum deviation inT28 of 0.3◦C. This compares well
with the PI performance, which has a maximum deviation
of 0.8◦C, and needs much longer to complete the transi-
tion to the new steady state. In principle the performance
of the PI controller could be improved using an additional
feedforward term based on the feedflow information lead-
ing to slightly better results. The NMPC controller also

Figure 3: Feed flow change: Comparison of real-time iteration NMPC
with a conventional PI controller for a feed flow step change by 20 %
at t = 1000 seconds.

compares well with other existing control strategies based
for example on exact I/O-linearization [16] and linear mul-
tivariable controller designs [2] such asH∞ minimization,
Direct Nyquist Array, Characteristic Locus method andH2

minimization.

4.2 Large Disturbance Scenario

In the following we consider the behavior of the closed-
loop with respect to a large deviation from the desired
steady state caused by a disturbance, see Fig. 4. For this
purpose we consider the following scenario: starting with
a steady state for an increased feed flow rate (by 20%),
we reduce att = 700 seconds simultaneously the feed-
flow (back to its nominal value) and the reflux, from
Lvol = 5.3 l/h down to Lvol = 2 l/h, while maintaining the
heating power constant at the (high) valueQ = 2.9 kW.
These inputs, that are maintained constant for 800 seconds,
heat the column up and move the temperature profile far
away from the nominal operating conditions, as can be seen
in Fig. 5, where the distorted temperature profile at time
t = 1500 s is shown.

Only at t = 1500 s the NMPC feedback is switched on.
While Q drops immediately down to its minimum value of
1.5 kW, Lvol is not increased to its maximum value, which
from first sight seems to be the best measure to cool the
column. However, this would result in valve saturation; it

Figure 4: Large disturbance scenario. Closed-loop response. Feedback
starts only at time t = 1500 seconds.
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Figure 5: Large disturbance scenario. The real temperature profile at
t = 1500 (+) is compared to the estimated profile (solid) and to the de-
sired steady state profile (dots/dashed).

is the formulated path constraintD ≥ Dmin which impedes
the immediate increase ofLvol.

Note that the PI controller fails to drive the system back
to the steady state as strong oscillations occur due to valve
saturation.

Computation Times: The computation times necessary for
the feedback and preparation phase of the real-time scheme
have been recorded for each recalculation instant and can
be found in Fig. 6. The time measurements were done ex-
ternally (from a MATLAB environment), i.e., they are not
CPU times in the strict sense, but represent an estimate for
the overall times that the computations required under the
given CPU load conditions.

Note that due to the fact that the sampling rate for com-
munication with the DCS was 10 seconds, the immediate
response may in our realization have taken up to 10 seconds
until it arrives at the distillation column, depending on
the phase difference of the optimizer and the data transfer
system.

Optimal Solution: To estimate the quality of the real-
time iteration scheme and the model used for prediction
it is interesting to compare the experimental closed-loop
with the simulated optimal open-loop trajectories as plotted
in Fig. 7.

The left column shows the experimental closed-loop results
for the large disturbance scenario presented before. The

right column shows the theoretically optimal open-loop tra-
jectories obtained off-line for the state att = 1500 seconds.
It can be seen that the experimental closed-loop trajectories
show considerable similarity with the theoretically optimal
solution. This shows on the one hand that the model cap-
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Figure 6: Computation times for preparation phase and for feedback
phase, during the large disturbance experiment (cf. Fig. 4). Note the
different scales of the graphs.

Figure 7: Large disturbance scenario. Left: Closed-loop response, as
in Fig. 4. Right: Theoretically optimal open-loop solution.
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tures sufficiently well the behaviour of the real apparatus,
and on the other hand that the real-time iteration NMPC
scheme delivers a good approximation to the optimal feed-
back control law.

The computation of the optimal trajectory with the off-line
multiple shooting method required 23 major SQP iterations
with a CPU time of 3356 seconds, where the control hori-
zon was chosen to consist of 45 multiple shooting intervals,
each of 30 seconds length. Note that the computation time
for this problem is in the same order as the whole process
duration.

4.3 Discussion

It was shown that the proposed real-time iteration NMPC
control scheme is not only feasible for a practical large
scale application, it also delivers good closed-loop perform-
ance. The key advantage is that the application did not
require much tuning, and a standard distillation model can
be used for control; the most time consuming step in the
controller setup is, however, the unavoidable parameter es-
timation and model validation.

5 Conclusions

In Part I of this paper we have presented a new numer-
ical approach to NMPC, the so calledreal-time iteration
scheme. The scheme is based on the direct multiple shoot-
ing method, which in particular allows to treat highly
nonlinear and unstable systems [9], and employs aninitial
value embeddingfor optimal transition from one optimiza-
tion problem to the next. The algorithm is implemented
within the dynamic optimization package MUSCOD-II,
which allows to provide the DAE model equations either in
the gPROMS modelling language [24] or as generic C or
Fortran-Code.

In Part II, the algorithm was applied experimentally for the
control of a binary distillation process, considering a DAE
model with 82 differential and 122 algebraic state variables
for optimization. The experimental results obtained confirm
the computational efficiency of the scheme and the straight-
forward application if a suitable system model is available.
As shown, even for rather large disturbances the real-time
iteration NMPC scheme is able to safely return the system
state to the desired setpoint.

The experimental study demonstrates that NMPC is a feas-
ible control alternative; it does not need much tuning and
can directly employ nonlinear first principle models. Due
to the computational efficiency of the real-time iteration
scheme, even large-scale models can be treated. Thus often
time consuming simplifications of models for use in online
control can be avoided.
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