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Abstract

In recent years, nonlinear model predictive control (NMPC) schemes have been derived that guarantee stability of the closed loop
under the assumption of full state information. However, only limited advances have been made with respect to output feedback in

the framework of nonlinear predictive control. This paper combines stabilizing instantaneous state feedback NMPC schemes with
high-gain observers to achieve output feedback stabilization. For a uniformly observable MIMO system class it is shown that the
resulting closed loop is asymptotically stable. Furthermore, the output feedback NMPC scheme recovers the performance of the

state feedback in the sense that the region of attraction and the trajectories of the state feedback scheme can be recovered to any
degree of accuracy for large enough observer gains, thus leading to semi-regional results. Additionally, it is shown that the output
feedback controller is robust with respect to static sector bounded nonlinear input uncertainties.
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1. Introduction

Model predictive control (MPC), also referred to as
moving horizon control or receding horizon control, has
become an attractive feedback strategy, especially for
linear or nonlinear systems subject to input and state
constraints. In general, linear and nonlinear MPC are
distinguished. Linear MPC refers to a family of MPC
schemes in which linear models are used to predict the
system dynamics, even though the dynamics of the
closed loop system is nonlinear due to the presence of
constraints. Linear MPC approaches have found suc-
cessful applications, especially in the process industries
[23]. By now, linear MPC theory is fairly mature.
Important issues such as the online computations, the
interplay between modeling, identification and control
as well as system theoretic issues like stability are well
addressed.

Linear models are widely and successfully used to
solve control problems. However, many systems are
inherently nonlinear. Higher product quality specifica-
tions, increasing productivity demands, tighter environ-
mental regulations and demanding economical
considerations require systems to be operated closer to
the boundary of the admissible operating region. Often
in these cases, linear models are not adequate to
describe the process dynamics and nonlinear models
must be used. This motivates the application of non-
linear model predictive control.

Model predictive control for nonlinear systems
(NMPC) has received considerable attention over the
past years. Many theoretical and practical issues have
been addressed. Several existing schemes guarantee
stability under full state information, see [1,7,19] for
recent reviews. In practice, however, not all states are
directly available by measurements. A common
approach to output feedback NMPC is to employ a
state feedback NMPC controller in combination with a
state observer. If this approach is used, in general little
can be said about the stability of the closed loop, since
no universal separation principle for nonlinear systems
exists.

Different approaches addressing the output feedback
problem in NMPC exist. In [21] a moving horizon
observer is presented, that together with the so called
dual-mode NMPC scheme [20] lead to semi-regional
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closed loop stability if no model–plant mismatch and
disturbances are present. Semi-regional stability in this
context means that for any subset of the region of
attraction of the state feedback there exists a set of
parameters (in [21] the sampling time and the enforced
contraction rate of the observer error) such that this
subset is contained in the region of attraction of the
output feedback controller. However, for the results in
[21] to hold it is required that a global (dynamic) opti-
mization problem can be solved. In [16], see also [24],
asymptotic stability for observer based discrete-time
nonlinear MPC for ‘‘weakly detectable’’ systems is
obtained. However, these results are of local nature.
The stability is guaranteed only for a sufficiently small
initial observer error. While the region of attraction of
the resulting output feedback controller in principle can
be estimated from Lipschitz constants of the system,
observer and controller, it is not clear which parameters
in the controller and observer must be changed to
increase the region of attraction of the output feedback
controller.

This article considers the use of high-gain observers in
conjunction with instantaneous NMPC. In instanta-
neous NMPC it is assumed that the solution to the open
loop optimal control problem is immediately available
and instantaneously implemented on the process at all
time instances. Hence, the optimal input is not
employed in a ‘‘sampled’’ fashion, as is often done in
NMPC. We show that for a special MIMO system class,
the resulting output feedback NMPC scheme does allow
performance recovery of the state feedback NMPC
controller as the observer gain increases. Performance
recovery in this context means that the region of
attraction and the rate of convergence of the output
feedback scheme approach that of the state feedback
scheme. Furthermore, under additional technical condi-
tions the resulting output feedback controller is robust
with respect to static sector bounded nonlinear input
uncertainties. The results are based on recently derived
separation principles [2,9,27].

The presented approach can, in principle, be extended
to the sampled-data case and to a more general system
class. Preliminary results in this direction can be found
in [10,11].

The paper is structured as follows: in Section 2 the
class of systems is specified. Section 3 contains the
description of the possible NMPC schemes for state
feedback and presents the high-gain observer. In Sec-
tion 4 the results on closed loop stability and perfor-
mance for the nominal system are derived. Section 5
shows under additional technical assumptions that the
output feedback scheme is robust with respect to static
sector bounded nonlinear input uncertainties. Some of
the properties and practical implications of the pre-
sented approaches are discussed in Section 6. In Section
7 the proposed output feedback controller is applied to
the control of two example systems: a mixed-culture
bioreactor with competition and external inhibition,
and an inverted pendulum on a cart.

In the following, �k k denotes the Euclidean vector
norm in Rn (where the dimension n follows from the
context) or the associated induced matrix norm. The
matrix blockdiag(A1,. . .,Ar) denotes a block diagonal
matrix with the matrices A1,. . .,Ar on the ‘‘diagonal’’,
while diag(�1,. . .,�r) denotes a diagonal matrix with the
scalars a1,. . .,ar on the diagonal. Whenever a semicolon
‘‘;’’ occurs in a function argument, the subsequent
arguments are additional parameters, i.e. f (x;g) means
the value of the function f at x with the parameter set to
g.
2. System class

This paper considers the stabilization of nonlinear
MIMO systems of the form

x
:

1 ¼ Ax1 þ B� x; uð Þ ð1aÞ

x
:

2 ¼  x; uð Þ ð1bÞ

y ¼
Cx1

x2

� �
ð1cÞ

with x> tð Þ ¼ x>1 tð Þ; x>2 tð Þ
� �

. The system state consists of
the vectors x1 tð Þ 2 Rr and x2 tð Þ 2 Rl, and the vector
y tð Þ 2 Rpþl is the measured output. The control input is
constrained, i.e. u tð Þ 2 U 
 Rm, where:

Assumption 2.1. U 
 Rm is compact and the origin is
contained in the interior of U.

The r�r matrix A, r�p matrix B and the p�r matrix C
have the following form

A ¼ blockdiag A1;A2; . . .Ap

� �
;

Ai ¼

0 1 0 . . . 0
0 0 1 . . . 0
..
. . .

. ..
.

0 . . . . . . 0 1
0 . . . . . . . . . 0

2
66664

3
77775

ri�ri

B ¼ blockdiag B1;B2; . . . ;Bp

� �
; Bi ¼

0
..
.

0
1

2
664

3
775

ri�1

C ¼ blockdiag C1;C2; . . . ;Cp

� �
;

Ci ¼ 1 0 . . . 0
� �

1�ri
;
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i.e. the x1 dynamics consists of p integrator chains of
length ri, with r=r1+ � � �+rp. Furthermore, the non-
linear functions � and  satisfy:

Assumption 2.2. The functions � : Rrþ1
� U ! Rr and

 : Rrþl
� U ! Rl are locally Lipschitz in their argu-

ments over the domain of interest with � 0; 0ð Þ ¼ 0 and
 0; 0ð Þ ¼ 0. Additionally � is bounded as function of x1.

Systems of this class are for example input affine
nonlinear systems of the form

�
:
¼ f �ð Þ þ g �ð Þu; y ¼ h �ð Þ

with full (vector) relative degree (r1,r2, . . .,rp), that is,



p
i¼1ri ¼ dim�. For these systems it is always possible to

find a coordinate transformation such that the system in
the new coordinates fits the structure (1), see [14].

We do not need to state any observability and con-
trollability assumption. The controllability assumption
is implicitly, as usual in predictive control, contained in
the assumption on the NMPC controller having a non-
trivial region of attraction. The observability of the
system is guaranteed since the x1 states can be recovered
by a high-gain controller as shown in Section 3.2, and
the x2 states are assumed to be directly measured.
3. NMPC output feedback controller: setup

The proposed output feedback controller for the sta-
bilization of the origin consists of a high-gain observer
for estimating the states and an instantaneous state
feedback NMPC controller.

3.1. State feedback NMPC

In the framework of predictive control, the value of
the manipulated variable is given by the solution of an
open loop optimal control problem. Herein, the open
loop optimal control problem that defines the system
input is given by
State feedback NMPC open loop optimal control

problem:

Solve

min
u �ð Þ

J x tð Þ; u �ð Þ;Tp

� �
ð2Þ

subject to:

x
:

1 ¼ Ax1 þ B� x; uð Þ ¼ x1 0ð Þx1 tð Þ ð3aÞ

x�
:

2 ¼  x; uð Þ; x2 0ð Þ ¼ x2 tð Þ ð3bÞ

u �ð Þ 2 U; � 2 0;Tp

� �
ð3cÞ

x Tp

� �
2 O ð3dÞ
with the cost functional

J x tð Þ; u �ð Þ;Tp

� �
:¼

ðTp

0

F x �ð Þ; u �ð Þð Þd� þ E x Tp

� �� �
: ð4Þ

The bar denotes internal controller variables and x �ð Þ is
the solution of Eqs. (3a)–(3b) driven by the input u(.) :
[0,Tp]!U over the prediction horizon Tp with initial
condition x(t). The stage cost F(x; u) satisfies:

Assumption 3.1. F : Rrþl
� U ! R is continuous in all

arguments with F 0; 0ð Þ ¼ 0 and F x; uð Þ > 0 8 x; uð Þ 6¼

0; 0ð Þ.

The constraint (3d) in the NMPC open loop optimal
control problem forces the final predicted state to lie in
the terminal region denoted by � and is thus often called
terminal region constraint. In the cost functional J, the
deviation from the origin of the final predicted state is
penalized by the terminal state penalty term E.

Notice that, for simplicity of exposition, only input
constraints are considered (besides the terminal state
constraint).

The optimal input signal resulting from the solution
of the optimal control problem (2) is denoted by
u�� � ;x tð Þð Þ. The input applied to the system is given by

u x tð Þð Þ :¼ u�� � ¼ 0 ; x tð Þð Þ: ð5Þ

Note that the solution to the NMPC open loop opti-
mal control problem must be available instantaneously
at all times without delay. Such instantaneous NMPC
formulations are often used for system theoretic inves-
tigations [18,19]. However, obtaining an instantaneous
solution of the dynamic optimization problem (2) and
(3) is often not possible in practice. Instead, a sampled-
data NMPC approach is often employed. The open-
loop optimal control problem is only solved at discrete
sampling instants and the resulting input signal is
applied open loop until the next sampling instant. If the
sampling intervals are short compared to the system
dynamics, the trajectories of the sampled-data imple-
mentation are often close to the instantaneous imple-
mentation.

If Tp, E, F are suitably chosen, the origin of the
nominal state feedback closed loop system with the
input (5) is asymptotically stable and the region of
attraction R 
 Rrþl contains the set of states for which
the open loop optimal control problem has a solution.
In the following it is assumed, that:

Assumption 3.2. The instantaneous state feedback u xð Þ is
locally Lipschitz in x and asymptotically stabilizes the
system (1) with a region of attraction R.

In principle this setup allows one to consider a whole
variety of different NMPC schemes (e.g. [5,15] see also
[19] for a review). In this sense, the results described in
L. Imsland et al. / Journal of Process Control 13 (2003) 633–644 635



the next sections can be seen as a special ‘‘separation’’
principle for NMPC using high-gain observers. The
main restriction is the requirement that the optimal
input must be locally Lipschitz.

3.2. High-gain observer

The proposed (partial state) observer for the recovery
of x1 is a standard high-gain observer [28] of the fol-
lowing form

x̂
:

1 ¼ Ax̂1 þ B�̂ x̂1; x2½ �; uð Þ þH yx1
� Cx̂1

� �
;

where H ¼ blockdiag H1; . . . ;Hp

� �
with

H>
i ¼ � ið Þ

1 ="; �
ið Þ

1 ="
2; . . . ; � ið Þ

ri
= 2ri

h i

and the � ið Þ
j s are such that the roots of

s ri þ � ið Þ
l s ri�1 þ � � � þ � ið Þ

ri�1sþ �
ið Þ
ri
¼ 0; i ¼ 1; . . . ; p

are in the open left half plane. The vector yx1
is the first

part of the measurement vector related to the states x1,
i.e. yx1

¼ Cx1, and 1
" is the high-gain parameter. A, B, C

and � are the same as in (1).
Since the x2 states are assumed to be directly mea-

sured it is only necessary to design an observer for the
x2 states.

Remark 3.1. Notice that the use of an observer makes it
necessary to define a (bounded) input also for estimated
states that are outside the feasibility region R of the
controller. One possible choice is to fix the open loop
input for x 62 R to an arbitrary value uf 2 U: u xð Þ ¼ uf,
8x 62 R.
4. Nominal stability of output feedback NMPC using

high-gain observers

In this section the nominal stability results for the
proposed output feedback controller are derived, i.e. it
is assumed that the plant and the model coincide
ð�̂ ¼ �Þ. It is shown that the performance of the state
feedback controller can be recovered to any precision
(see Definition 4.1) and that asymptotic stability can be
achieved for a sufficiently small value of " in the observer.

Consider the closed loop system given by (1a)–(1c) and
the control given as defined by the NMPC controller
using the observed state x̂1 from the high-gain observer.

In the following, recovery of the performance of the
state feedback controller by the output feedback con-
troller for the nominal system and for sufficiently small "
is established. We distinguish between the state trajec-
tory resulting from the application of the state feedback
controller and the state trajectory resulting from the
application of the output feedback controller using the
high-gain observer. Specifically xsf � ; x0ð Þ denotes the
trajectory resulting from the application of the state-
feedback NMPC controller starting at xsf 0ð Þ ¼ x0. The
trajectory resulting from the application of the NMPC
controlled based on the state estimates x̂1 starting from
x" 0ð Þ ¼ x0 and initializing the observer with x̂1 0ð Þ ¼

x̂10 2 Q is denoted by x" � ; x0; x̂10ð Þ. Here Q is an arbi-
trary but fixed compact set of possible observer initial
conditions. The suffix " indicates the dependence on the
value of the high-gain parameter e. Using this notation,
the desired recovery of performance means:

Definition 4.1. [Performance recovery with respect to "]
Assume that xst t; x0ð Þ and x" t; x0; x̂10ð Þ start from the
same initial state x0, i.e. xsf 0; x0ð Þ ¼ x" 0; x0; x̂10ð Þ ¼ x0.
Then, recovery of performance with respect to " means
that for any d>0 there exists an "* such that for all
0<"4"*,

x" t; x0; x̂10ð Þ � xsf t;x0ð Þ
�� ��4 �; 8t > 0; 8x̂10 2 Q:

Given this definition of performance recovery, the
following theorem holds for the system controlled by
the output feedback NMPC controller:

Theorem 4.1. Assume that Assumptions 2.1–3.2 hold. Let
S be any compact set contained in the interior of R. Fur-
thermore, the observer initial condition satisfies x̂1 0ð Þ ¼

x̂10 2 Q with Q arbitrary but fixed and compact. Then
there exists a (sufficiently small) "*>0 such that for all
0<"4"* the closed loop system is asymptotically stable
with a region of attraction of at least S. Further, the per-
formance of the state feedback NMPC controller is
recovered in the sense of Definition 4.1.

Outline of Proof. The asymptotic stability follows
from the proofs of Theorems 1, 2 and 4 in [2]. The
application of these theorems is possible since the local
Lipschitz property of the state feedback combined with
the closed loop stability allow to use converse Lyapunov
arguments to assure the existence of a Lyapunov func-
tion for the state feedback closed loop. Theorem 1 in [2]
guarantees boundedness of solutions starting in S if
" < "�1, with "�1 sufficiently small. Theorem 2 guarantees
that the solutions starting in S will enter any ball
around the origin in finite time if " < "�2

1, where "�2 is
sufficiently small with "�2 < "�1. Positioned in such a
(small) ball, one can establish asymptotic stability for a
"�3 < "�2 as long as " < "�3, under the assumption �0 ¼ �.
Furthermore, Theorem 3 in [2] shows that the trajectories
of the controlled system using the observed state in the
controller, converge uniformly to the trajectories of the
controlled system using the true state in the controller, as
1 Note, "�2 depends on the size of the ball.
636 L. Imsland et al. / Journal of Process Control 13 (2003) 633–644



"!0. Hence, for " small enough, the trajectories (and
hence the performance) of the state feedback NMPC are
recovered. &

The stability result derived is semi-regional, since for
any compact subset S of R such a maximum value "?

exists. In general the closer the set S approximates the
set R the smaller " is. Note that the performance
recovery of Theorem 4.1 also implies recovery of the
rate of convergence of the state feedback controller for
sufficiently small " and convergence of the state and
output feedback trajectories.

Note that the satisfaction of the input constraints is
guaranteed by the NMPC scheme and the boundedness
of the input for x̂ 62 R, see Remark 3.1.

In the next section, the result on performance recov-
ery will be expanded to systems having unknown but
sector bounded nonlinear static input uncertainties.
5. Robustness to input uncertainties

The results derived so far are only valid in the nom-
inal case. In this section we show that the proposed
output feedback controller is robustly stable with
respect to unknown but sector bounded input non-
linearities. The result is based on the robustness result
given in [2]. However, to utilize this result it is necessary
that the state feedback controller robustly exponentially
stabilizes the system. Thus, in a first step we show that
the state feedback NMPC controller discussed in Sec-
tion 3.1 leads to exponential stability even in the case of
unknown static input uncertainties.

As uncertainty we consider that the input applied to
the system is subject to a static (unknown) input uncer-
tainty uD ¼ D uð Þ, as depicted in Fig. 1 . We will fur-
thermore assume that D : Rm

! Rm has the following
structure: D uð Þ ¼ diag �1 u1ð Þ; . . . ; �m umð Þð Þ. To derive the
result we furthermore limit the system class and
strengthen the conditions on the state feedback NMPC
controller used. For the purpose of this section we con-
sider input affine systems of the form:

x
:

1 ¼ Ax1 þ B�~ xð Þu ð6aÞ

x
:

2 ¼  ~ 1 xð Þ þ  ~ 2 xð Þu: ð6bÞ

The matrices A and B have the same form as in Sec-
tion 2, and, �~ ,  ~ 1 and  ~ 2 have to satisfy similar
assumptions as in the nominal case:
Assumption 5.1. The functions �~ : Rrþl
! Rrþm;  ~ 1 :

Rrþl
! Rl and  ~ 2 : Rrþl

! Rlþm are locally Lipschitz
in x over the domain of interest with �~ 0ð Þ ¼ 0 and
 ~ 1 0ð Þ ¼ 0. Additionally �~ is bounded as function of x1.

Note that we have to consider the system class (6)
since we use the high-gain observer outlined in Section
3.2. The robust exponential stability result (to be
derived) of the state feedback NMPC controller holds,
however, for general input affine systems. To simplify
notation we denote system (6) sometimes briefly by

x
:
¼ f xð Þ þ g xð Þu;

where fðxÞ ¼ ½ðAx1Þ
>; ð ~ 1ðxÞÞ

>
�
> and gðxÞ ¼ ½ðB�~ðxÞÞ>;

ð ~ 2ðxÞÞ
>
�
>. With respect to the stage cost used in the

NMPC controller we assume that:

Assumption 5.2. The stage cost in the NMPC controller
is of the form

F x; uð Þ ¼ l xð Þ þ u>R xð Þu; ð7Þ

where l xð Þ þ u>R xð Þu > cF x; uk k2
2; 8 x; uð Þ 2 Rrþl

� U

with cF > 0, and R xð Þ ¼ diag r1 xð Þ; . . . ; rm xð Þð Þ.

Nominal exponential stability is guaranteed (see e.g.
[15]) by the following slightly strengthened assumption
on the terminal region and terminal penalty term:

Assumption 5.3. Assume E 2 C1 is a proper F-compat-
ible control Lyapunov function (CLF), i.e.

@E

@x
f x; k xð Þð Þ þ l xð Þ þ k xð Þ

>R xð Þk xð Þ4 0; 8x 2 � ð8Þ

for some locally Lipschitz control law k(x), and

c1E xk k2 4E xð Þ4 c2E xk k2; 8x 2 �: ð9Þ

with some c2E > c1E > 0.

This assumption can for example be satisfied using the
quasi-infinite horizon NMPC scheme (QIH-NMPC) as
described in [6]. As will be shown, this assumption is
essential for robust exponential stability of the state
feedback NMPC controller.

Since inverse optimality results are used to derive the
robustness, it is additionally necessary [17] that the
nominal open loop optimal control problem for the
NMPC controller satisfies:

Assumption 5.4. The optimal control for the nominal
system (6)

u x tð Þð Þ :¼ u�? � ¼ 0; x tð Þð Þ:

is unconstrained in a (compact) region of interest. Fur-
ther, the control is continuously differentiable, and the
Fig. 1. Closed loop with unknown static input nonlinearity.
L. Imsland et al. / Journal of Process Control 13 (2003) 633–644 637



value function, defined by the optimal solution of the
NMPC open loop optimal control problem

V x;Tp

� �
:¼ J x; u�? �; x tð Þð Þ;Tp

� �

is twice continuously differentiable.

Conditions ensuring that the value function is C2 for
unconstrained NMPC-controllers can for example be
found in [15].

5.1. Robust exponential stability of state feedback
NMPC

As stated in the following lemma, the nominal state
feedback NMPC controller robustly exponentially sta-
bilizes the system if the input nonlinearity �(u) maps
into the sector 1

2 ;1
� �

in the sense2

1

2
s>s4 s>D sð Þ41; 8s 2 Rm: ð10Þ

That is, the system has a sector margin 1
2 ;1
� �

[25].

Lemma 5.1. Assume that the assumptions of Theorem 4.1
and Assumptions 5.1–5.4 hold. If the input to the system
is D u? � ¼ 0; xð Þð Þ, and if D �ð Þ satisfies (10), then the ori-
gin of system (6) under the state feedback controller is
exponentially stable.

Proof. The proof of the Lemma can be found in the
Appendix. &

Note that the region of attraction R~ for the closed
loop with the uncertainty D �ð Þ in general differs from
the nominal region of attraction R of the state feed-
back. However, any compact level set V xð Þ4 c; c > 0
contained in R is an inner estimate of R~ as shown in
the proof of Lemma 5.1, since V

:
xð Þ4 0 for all

x 2 R.

Remark 5.1. Strictly speaking Lemma 5.1 is only valid
for the unconstrained case. However, in the presence of
constraints the exponential convergence result at least
holds locally. This follows from the fact that the local
control law k(x) corresponding to the choice of F and E
renders the origin (locally) exponentially stable. Since
the NMPC feedback leads to a lower cost than the local
control law, local exponential stability of the NMPC
controller follows.

Lemma 5.1 establishes the exponential stability of
the closed loop in the case of input uncertainties using
the state feedback NMPC controller. This result can be
used to show closed loop robustness with respect to the
considered input uncertainties in the output feedback
case, which will be done in the remainder of the section.

5.2. Robustness of output feedback NMPC using high-
gain observers

Using Lemma 5.1, and the robustness of the observer
to modeling errors in � [2],3 one can adapt Theorem 5 in
[2] to the present case:

Theorem 5.1. Assume that the assumptions of Theorem
4.1 and Assumptions 5.1–5.4 hold. Then for any com-
pact subset S 
 R~ and for any observer initial condition
that satisfies x̂1 0ð Þ ¼ x̂10 2 Q with Q arbitrary but fixed
and compact there exists an "� such that for 0 < "4 "�

the system

x
:

1 ¼ Ax1 þ B�~ xð ÞD uð Þ

x
:

2 ¼  ~ 1 xð Þ þ  ~ 2 xð ÞD uð Þ

y> ¼ Cx1ð Þ
>x>2

� �

with

1

2
s>s4 s>D sð Þ41; 8s 2 Rm;

controlled by the output feedback NMPC scheme using
the model given by (6) in the controller and observer
and the cost (7) is exponentially stable and has a region
of attraction of at least S. Further, the performance of
the state feedback NMPC controller is recovered in the
sense of Definition 4.1.

Proof. Utilizing Lemma 5.1 the proof follows from [2,
Theorem 5]. &
6. Discussion of results

In the previous sections we outlined an output feed-
back NMPC scheme using a high-gain controller for
state recovery. As shown, the scheme does lead to
nominal stability. Moreover, based on a robust expo-
nential stability result for state feedback NMPC, we
showed that the output feedback controller is robustly
stable for certain classes of (unknown) static input
nonlinearities.

The results are based on the assumption that the
NMPC controller is time continuous/instantaneous. In
2 As the proof reveals, more general R(x) and D �ð Þ satisfying

u>R xð Þ½D uð Þ � 1
2 u�5 0 can be tolarated. This is, however, not elabo-

rated on in any further detail here.
3 The modeling errors in  are not important for the estimation

part, since the x2-states are assumed to be measured.
638 L. Imsland et al. / Journal of Process Control 13 (2003) 633–644



practice, it is of course not possible to solve the non-
linear optimization problem instantaneously. Instead,
typically, the open-loop optimal control problem will be
solved only at certain sampling instants. The first part
of the obtained control signal is then applied to the
system, until the next sampling instant. Also some time
is needed to compute the solution of the optimal control
problem, thus the computed control is based to some
degree on old information, introducing delay in the
closed loop. In practice this requires that the dynamics
of the process is slow compared to the NMPC sampling
interval and to the time needed to solve the optimization
problem. Note that some preliminary results with
respect to the ‘‘standard’’ sampled-data NMPC setup
can be found in [10,11].

One of the drawbacks of high-gain observers is that in
a transient phase, due to the so called peaking phe-
nomena [9,22], the observed state may be outside the
region where the NMPC optimization problem has a
feasible solution. As specified in Remark 3.1 in this case
the input must be assigned some fall-back value. Under
this condition the structure of the high-gain observer
and the bounded inputs ensure [2] that " can be chosen
small enough so that the observer state converges to the
true state before the true state leaves the region of
attraction (and hence the feasibility area) of the NMPC
controller.

It is assumed that the optimal control is Lipschitz in
the initial state. In general, the solution of an optimal
control problem (and hence, the state feedback defined
in Assumption 3.2) can be non-Lipschitz in the initial
values. In particular, it is known that NMPC can stabi-
lize systems that are not stabilizable by continuous
control [12].
7. Examples

In this section the derived results on the recovery of
performance and the robustness of the output feedback
control scheme with respect to sector bounded input
uncertainties are verified considering two example sys-
tems: the control of a continuous mixed culture bior-
eactor and the control of an uncertain inverted
pendulum on a cart.

7.1. Control of a continuous mixed culture bioreactor

To demonstrate that the proposed output feedback
NMPC scheme recovers the performance of the corre-
sponding state feedback controller, the control of a
continuous mixed culture bioreactor as presented in [13]
is considered, see Fig. 2. The system consists of a culture
of two cell strains, in the following called Species 1 and
2, that have different sensitivity to an external growth-
inhibiting agent. The interactions of the two cell popu-
lations are illustrated in the right part of Fig. 2. The cell
density of the inhibitor resistant strain is denoted by c1,
the cell density of the inhibitor sensitive strain is deno-
ted by c2, and the substrate and inhibitor concentrations
in the reactor are denoted by S and I. Based on the full
model described in [13] a reduced third order model of
the following form can be obtained

dc1

dt
¼ �1 Sð Þc1 � c1u1;

dc2

dt
¼ �2 S; Ið Þc2 � c2u1;

dI

dt
¼ �pc1Iþ u2 � Iu1:

The inputs are the dilution rate u1 and the inhibitor
addition rate u2. The deactivation constant of the inhi-
bitor for Species 2 is denoted by p. The specific growth
rates �1(S) and �2(S,I) are given by

�1 Sð Þ ¼
�1;MS
KþS ; �2 S; Ið Þ ¼

�2;MS
KþS

KI

KIþI

where K, KI, �1;M and �2;M are constant parameters as
specified in [13]. The substrate concentration is given by

S ¼ Sf �
c1

Y1
�

c2

Y2
:

Here Y1, Y2 are the yields of the species and Sf is the
substrate inlet concentration. The control objective is to
stabilize the steady state c1s=0.016 g/l, c2s=0.06 g/l,
Is=0.005 g/l. The outlined output feedback NMPC
scheme is used to achieve this objective. The measured
outputs are given by

y ¼ ln
c1

c2
; c1

� �>
:

Performing the following coordinate transformation

z1 ¼ ln
c1

c2
; z2 ¼ �1 Sð Þ � �2 S; Ið Þ; z3 ¼ c1;

the transformed system is of the model structure
assumed in Section 2 (x1 ¼ z1; z2½ �

>; x2 ¼ z3). As state
Fig. 2. Schematic diagram of the continuous mixed culture bioreactor

and the strain/inhibitor interactions.
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feedback NMPC scheme, the quasi-infinite horizon
NMPC strategy with the sampling time set to zero is
used. The cost F weighs the quadratic deviation of the
states and inputs in the new coordinates from their
steady state values. For simplicity, unit weights on all
states and inputs are considered. The horizon Tp is set
to 20 h. A quadratic upper bound E on the infinite
horizon cost and a terminal region � satisfying the
assumptions of [5] are calculated using LMI/PLDI-
techniques [3]. The piecewise linear differential inclusion
(PLDI) representing the dynamics in a neighborhood of
the origin is found using the methods described in [26].
The states z1 and z2 are estimated from the measure-
ments y1 and y2 via a high-gain observer as described in
Section 3.2. The parameters �1 and �2 in the observer
are chosen to �1 ¼

ffiffiffi
2

p
, �2 ¼ 1. To show the recovery of

performance different values of the high-gain parameter
" of the observer are compared. In all shown simula-
tions the observer is initialized with the correct values
for z1 and z3 (since they can be directly obtained from
the measurements), whereas z2 is assumed unknown and
initialized with the steady state value. Fig. 3. exemplary
shows closed loop system trajectories projected onto the
c1/c2 phase plane for different observer gains 1

" in com-
parison to the state feedback NMPC controller starting
from the same initial condition. As can be seen, the lar-
ger the observer gain (the smaller "), the closer the tra-
jectories converge to the state feedback case. Fig. 4
shows the corresponding time behavior of the inhibitor
concentration I (related to the unmeasured state z2) and
the inhibitor addition rate (input u2) for different values
of ". Additionally, the real cost occurring, i.e. the inte-
grated quadratic error between the steady state values
for the states and inputs in transformed coordinates, is
plotted. The cost of the output feedback controller
approaches the cost of the state feedback controller for
lower ", which shows the recovery of performance.
Notice that we use relatively low gains for the observer,
meaning that " is large. Higher observer gains can lead
to problems in case of measurement noise. This is often
considered as the main limitation using high-gain
observers for state estimation.

This example verifies the stability of the closed loop
and the recovery of performance for increasing values of
the observer gain. In the next section, an unstable
example system is considered to show the recovery of
the region of attraction and the robustness to a sector
bounded input uncertainty.

7.2. Control of an inverted pendulum

This section considers the control of an (unstable)
inverted pendulum on a cart. The parameters and model
equations of the cart-pendulum system are taken from
[8]. Fig. 5 schematically shows the inverted pendulum
on a cart system. The angle of the pendulum with the
vertical axis is denoted by z1. The input to the system is
given by the force u which acts on the cart’s translation
and is limited to � 10N4 u tð Þ4 10N. The control
objective is to stabilize the angle z1=0 (upright posi-
tion) while the cart’s position is not limited (and thus
not modeled and controlled). It is assumed that only the
angle z1 but not the angular velocity can be measured
Fig. 4. Trajectories of I, u2 and summed up cost.
Fig. 3. Phase plot of c1 and c2.
 Fig. 5. Inverted pendulum on a cart.
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directly. The model of the system is given by the fol-
lowing equations:

z
:
1 ¼ z2

z
:
2 ¼

ml cos z1ð Þ sin z1ð Þz2
2 � g mþMð Þ sin z1ð Þ þ cos z1ð Þ�u

ml cos2 z1ð Þ �
4

3
mþMð Þl

y ¼ z1

where z2 is the angular velocity of the pendulum. The
parameters M=1 kg, m=0.2 kg, l=0.6 m and g ¼ 10 m

s2

are constant. With respect to the ‘‘input gain’’ � we
consider that it is uncertain (but constant) and lies
between � 2 1=2; 2½ �. This uncertainty could for example
result from an uncertainty in the motor of the motor
that provides the necessary force (moment) on the cart.
The nominal value of � is 1. This model fits, besides the
assumed input constraints, in the model class considered
in Section 5 x1 ¼ z1; z2½ �; no x2ð Þ.
Similar to the first example, the stage cost is quadratic
and the weights on the states and input are chosen as

unit weights for simplicity, i.e. F z; uð Þ ¼ z>
1 0
0 1

� �
zþ u2.

As state feedback QIH-NMPC is used. The terminal
penalty cost E and the terminal region � are obtained
using the same techniques as for the continuous mixed
culture bioreactor. The resulting terminal penalty cost E

is given by: E zð Þ ¼ z>
311:31 66:20
66:20 34:99

� �
z; and the term-

inal region � is given by � ¼ z 2 R2 E zð Þ4 20
�� ��

. The
control horizon Tp is chosen to 0.5 s. In Fig. 6 the region
of attraction and the contour lines of the value function
of the state feedback NMPC controller are shown. These
results are obtained solving the open loop state feedback
NMPC problem for different initial conditions of z1 and
z2. In the output feedback case, whenever the state esti-
mate leaves the region of attraction of the state feedback
QIH-NMPC scheme (i.e. there is no solution to the open
loop optimization problem) the input is set to 0, compare
Remark 3.1.

The states z1 and z2 are estimated from y using the
described high-gain observer. The observer parameters
�1 and �2 are chosen to �1=2 and �2=1. For all sub-
sequent simulations the observer is started with zero
initial conditions, i.e. ẑ1 ¼ ẑ2 ¼ 0.

Fig. 7 shows the phase plot of the system states and
the observer states of the closed loop system for differ-
ent values of " for �=1 (nominal system). As expected,
for decreasing values of " the trajectories of the state
feedback control scheme are recovered. Comparing
both plots one sees that for "=0.1, when the observer
state and the real state are at the boundary of the region
of attraction of the state feedback controller, a small
estimation error does lead to infeasibility of the open
loop problem and thus to divergence. For smaller values
of " the correct state is recovered faster and infeasibility/
divergence are avoided. However, for smaller values of "
a bigger (but time-wise shorter) peaking of the observer
Fig. 6. Level sets of the quasi infinite horizon state feedback NMPC

controller value function.
Fig. 7. Phase plot of the nominal system states (left) and the observer states (right) for �=1.
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error at the beginning occurs, see Fig. 7, right plot. This
is also evident in the time plot of the states and inputs as
shown in Fig. 8. Notice also that in the state feedback
case for the initial conditions shown the input con-
straints are not hit, while for all output feedback cases
the NMPC controller hits the input constraints.

To show the robustness with respect to sector boun-
ded input nonlinearities, Fig. 9 shows the trajectories of
the closed loop system for a value of �=2. In this case,
the observer and NMPC controller use the nominal
value of �nom=1. The controller is still able to stabilize
the system despite the gain uncertainty, however the
performance degrades.

The given examples underpin the derived results on
the recovery of the region of attraction and performance
as well as the robustness for the high-gain observer
based NMPC strategy. As shown, for a too slow high-
gain observer the closed loop trajectories may diverge
from a given initial condition. However, sufficiently
small values of " do lead to closed loop stability and
satisfying recovery of performance.
8. Conclusions

Nonlinear model predictive control has received con-
siderable attention during the past decades. However,
no significant progress with respect to the output feed-
back case has been made. The existing solutions are
either of local nature [16,24] or difficult to implement
[21]. In this paper employing results from [2], an NMPC
output feedback strategy is presented that achieves
semi-regional stability and recovery of performance.
The scheme consists of an NMPC state feedback con-
troller and a high-gain observer. Besides nominal stabi-
lity, the scheme possesses some robustness properties
with respect to (unknown) sector bounded input non-
linearities. The main restrictions of the scheme are: (i)
the special system structure assumed; (ii) that the
NMPC controller is assumed to compute control solu-
tions instantaneously; and (iii) that the optimal input of
the NMPC controller must be locally Lipschitz as a
function of the state. Results considering a sampled-
data NMPC scheme instead of the instantaneous
scheme, in addition to expanding the considered system
class are suggested in [10,11].

From a practical perspective, one should additionally
note the inherent problem of high gain observers with
respect to measurement noise, which may restrict the
applicability. As a consequence, the derived results
should not be seen as directly applicable in practice.
Instead, the results should mainly be regarded as an
intermediate step towards a practically suitable output
feedback NMPC scheme with guaranteed stability.
Appendix A

Proof of Lemma 5.1. For NMPC robust asymptotic
stability results of this form have been derived in [17]
and in [4]. Thus, we have to show that under the given
assumptions also robust exponential stability is achieved.

Under essentially the same assumptions as used here,
[4,17] show that the NMPC control law is inverse opti-
mal, i.e. it is also optimal for a modified optimal control
problem spanning over an infinite horizon with the cost
function

J� x; u �ð Þ;1ð Þ ¼

ð1
0

l� x �ð Þð Þ þ u> �ð ÞR x �ð Þð Þu �ð Þd�

where

l� xð Þ ¼ l xð Þ �
@

@Tp
V x;TPð Þ:
Fig. 8. Trajectories of z1, z2 and the input u.
 Fig. 9. Trajectories z1, z2 and u in case of input uncertainty (g=2).
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Also the NMPC value function is the value function
for the infinite horizon problem, i.e. V x;Tp

� �
¼ V� x;1ð Þ

where V� is the value function associated with the cost J�.
Due to this inverse optimality in the nominal case the
NMPC state feedback control scheme has the same
(asymptotic) robustness properties (stability margins) as
infinite horizon optimal control [17].

As noted in [4,17] the optimal control can be written
as u? � ¼ 0;xð Þ ¼ � xð Þ, where

� xð Þ ¼ � 1
2R

�1 xð Þ Vxg xð Þ½ �
>;

with Vx :¼
@V x;Tpð Þ

@x x;Tp

� �
. Furthermore, the nominal

system satisfies

Vx f xð Þ þ Vxg xð Þ� xð Þ ¼ �l� xð Þ � �> xð ÞR xð Þ� xð Þ:

For the real system with the unknown static input
nonlinearity, V

:
is given by

V
:
x;Tp

� �
¼ Vx f xð Þ þ Vxg xð ÞD � xð Þð Þ

¼ Vx f xð Þ þ Vx� xð Þ

þ Vxg xð ÞD � xð Þð Þ � Vxg xð Þ� xð Þ½ �

¼ �l� xð Þ � �> xð ÞR xð Þ� xð Þ

þ Vxg xð ÞD � xð Þð Þ � Vxg xð Þ� xð Þ½ �

¼ �l� xð Þ þ Vxg xð ÞD � xð Þð Þ �
1

2
Vxg xð Þ� xð Þ

� �

¼ �l� xð Þ � 2�> xð ÞR xð Þ D � xð Þð Þ �
1

2
� xð Þ

� �
:

Since R xð Þ and D xð Þ are diagonal it follows that

V
:
x;Tp

� �
4 � l� xð Þ ¼ �l xð Þ þ

@

@Tp
V x;TPð Þ:

Additionally, we know [4,17] that @
@Tp

V x;TPð Þ4 0.
Thus, using Assumption 5.2 yields

V
:
x;Tp

� �
4 � l xð Þ4 � cF xk k2: ð11Þ

Consequently, V is strictly decreasing along solution tra-
jectories. Furthermore, for V to be a Lyapunov function
showing exponential stability, it is required that V can
be quadratically lower and upper bounded. Due to
Assumptions 5.3 and 5.2 there exist constants c1 >
0; c2 > 0; r > 0 such that for all x with xk k4 r

c1 xk k2 4V x;Tp

� �
4 c2 xk k2;

This, together with (11) implies that V x;Tp

� �
is a valid

Lyapunov function showing exponential stability. &
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